utils.py
Utility functions used throughout the package.
Attributes:
Name | Type | Description |
---|---|---|
use_colorlog | bool | Whether the logging should use colorlog or not. |
build_SkyCoord(catalog)
¶
Create a SkyCoord array for each target source.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
catalog | DataFrame | Catalog of source coordinates. | required |
Returns:
Type | Description |
---|---|
SkyCoord | Target source(s) SkyCoord. |
Source code in vasttools/utils.py
def build_SkyCoord(catalog: pd.DataFrame) -> SkyCoord:
"""
Create a SkyCoord array for each target source.
Args:
catalog: Catalog of source coordinates.
Returns:
Target source(s) SkyCoord.
"""
logger = logging.getLogger()
ra_str = catalog['ra'].iloc[0]
if catalog['ra'].dtype == np.float64:
hms = False
deg = True
elif ":" in ra_str or " " in ra_str:
hms = True
deg = False
else:
deg = True
hms = False
if hms:
src_coords = SkyCoord(
catalog['ra'],
catalog['dec'],
unit=(
u.hourangle,
u.deg))
else:
src_coords = SkyCoord(
catalog['ra'],
catalog['dec'],
unit=(
u.deg,
u.deg))
return src_coords
build_catalog(coords, source_names)
¶
Build the catalogue of target sources.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coords | str | The coordinates (comma-separated) or filename entered. | required |
source_names | str | Comma-separated source names. | required |
Returns:
Type | Description |
---|---|
DataFrame | Catalogue of target sources. |
Source code in vasttools/utils.py
def build_catalog(coords: str, source_names: str) -> pd.DataFrame:
"""
Build the catalogue of target sources.
Args:
coords: The coordinates (comma-separated) or filename entered.
source_names: Comma-separated source names.
Returns:
Catalogue of target sources.
"""
logger = logging.getLogger()
if " " not in coords:
logger.info("Loading file {}".format(coords))
# Give explicit check to file existence
user_file = os.path.abspath(coords)
if not os.path.isfile(user_file):
logger.critical("{} not found!".format(user_file))
logger.critical("Exiting.")
sys.exit()
try:
catalog = pd.read_csv(user_file, comment="#")
catalog.dropna(how="all", inplace=True)
logger.debug(catalog)
catalog.columns = map(str.lower, catalog.columns)
logger.debug(catalog.columns)
no_ra_col = "ra" not in catalog.columns
no_dec_col = "dec" not in catalog.columns
if no_ra_col or no_dec_col:
logger.critical(
"Cannot find one of 'ra' or 'dec' in input file.")
logger.critical("Please check column headers!")
sys.exit()
if "name" not in catalog.columns:
catalog["name"] = [
"{}_{}".format(
i, j) for i, j in zip(
catalog['ra'], catalog['dec'])]
else:
catalog['name'] = catalog['name'].astype(str)
except Exception as e:
logger.critical(
"Pandas reading of {} failed!".format(coords))
logger.critical("Check format!")
sys.exit()
else:
catalog_dict = {'ra': [], 'dec': []}
coords = coords.split(",")
for i in coords:
ra_str, dec_str = i.split(" ")
catalog_dict['ra'].append(ra_str)
catalog_dict['dec'].append(dec_str)
if source_names != "":
source_names = source_names.split(",")
if len(source_names) != len(catalog_dict['ra']):
logger.critical(
("All sources must be named "
"when using '--source-names'."))
logger.critical("Please check inputs.")
sys.exit()
else:
source_names = [
"{}_{}".format(
i, j) for i, j in zip(
catalog_dict['ra'], catalog_dict['dec'])]
catalog_dict['name'] = source_names
catalog = pd.DataFrame.from_dict(catalog_dict)
catalog = catalog[['name', 'ra', 'dec']]
catalog['name'] = catalog['name'].astype(str)
return catalog
calculate_m_metric(flux_a, flux_b)
¶
Calculate the m variability metric which is the modulation index between two fluxes. This is proportional to the fractional variability. See Section 5 of Mooley et al. (2016) for details, DOI: 10.3847/0004-637X/818/2/105.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flux_a | float | flux value "A". | required |
flux_b | float | flux value "B". | required |
Returns:
Type | Description |
---|---|
float | the m metric for flux values "A" and "B". |
Source code in vasttools/utils.py
def calculate_m_metric(flux_a: float, flux_b: float) -> float:
"""
Calculate the m variability metric which is the modulation index between
two fluxes.
This is proportional to the fractional variability.
See Section 5 of Mooley et al. (2016) for details,
DOI: 10.3847/0004-637X/818/2/105.
Args:
flux_a (float): flux value "A".
flux_b (float): flux value "B".
Returns:
float: the m metric for flux values "A" and "B".
"""
return 2 * ((flux_a - flux_b) / (flux_a + flux_b))
calculate_vs_metric(flux_a, flux_b, flux_err_a, flux_err_b)
¶
Calculate the Vs variability metric which is the t-statistic that the provided fluxes are variable. See Section 5 of Mooley et al. (2016) for details, DOI: 10.3847/0004-637X/818/2/105.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flux_a | float | flux value "A". | required |
flux_b | float | flux value "B". | required |
flux_err_a | float | error of | required |
flux_err_b | float | error of | required |
Returns:
Type | Description |
---|---|
float | the Vs metric for flux values "A" and "B". |
Source code in vasttools/utils.py
def calculate_vs_metric(
flux_a: float, flux_b: float, flux_err_a: float, flux_err_b: float
) -> float:
"""
Calculate the Vs variability metric which is the t-statistic that the
provided fluxes are variable. See Section 5 of Mooley et al. (2016)
for details, DOI: 10.3847/0004-637X/818/2/105.
Args:
flux_a (float): flux value "A".
flux_b (float): flux value "B".
flux_err_a (float): error of `flux_a`.
flux_err_b (float): error of `flux_b`.
Returns:
float: the Vs metric for flux values "A" and "B".
"""
return (flux_a - flux_b) / np.hypot(flux_err_a, flux_err_b)
check_file(path)
¶
Check if logging file exists.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | filepath to check | required |
Returns:
Type | Description |
---|---|
bool | Boolean representing the file existence, 'True' if present, otherwise 'False'. |
Source code in vasttools/utils.py
def check_file(path: str) -> bool:
"""
Check if logging file exists.
Args:
path: filepath to check
Returns:
Boolean representing the file existence, 'True' if present, otherwise
'False'.
"""
logger = logging.getLogger()
exists = os.path.isfile(path)
if not exists:
logger.critical(
"Cannot find file '%s'!", path
)
return exists
check_racs_exists(base_dir)
¶
Check if RACS directory exists
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_dir | str | Path to base directory | required |
Returns:
Type | Description |
---|---|
bool | True if exists, False otherwise. |
Source code in vasttools/utils.py
def check_racs_exists(base_dir: str) -> bool:
"""
Check if RACS directory exists
Args:
base_dir: Path to base directory
Returns:
True if exists, False otherwise.
"""
return os.path.isdir(os.path.join(base_dir, "EPOCH00"))
create_moc_from_fits(fits_file, max_depth=9)
¶
Creates a MOC from (assuming) an ASKAP fits image using the cheat method of analysing the edge pixels of the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fits_file | str | The path of the ASKAP FITS image to generate the MOC from. | required |
max_depth | int | Max depth parameter passed to the MOC.from_polygon_skycoord() function, defaults to 9. | 9 |
Returns:
Type | Description |
---|---|
MOC | The MOC generated from the FITS file. |
Exceptions:
Type | Description |
---|---|
Exception | When the FITS file cannot be found. |
Source code in vasttools/utils.py
def create_moc_from_fits(fits_file: str, max_depth: int = 9) -> MOC:
"""
Creates a MOC from (assuming) an ASKAP fits image
using the cheat method of analysing the edge pixels of the image.
Args:
fits_file: The path of the ASKAP FITS image to generate the MOC from.
max_depth: Max depth parameter passed to the
MOC.from_polygon_skycoord() function, defaults to 9.
Returns:
The MOC generated from the FITS file.
Raises:
Exception: When the FITS file cannot be found.
"""
if not os.path.isfile(fits_file):
raise Exception("{} does not exist".format(fits_file))
with open_fits(fits_file) as vast_fits:
data = vast_fits[0].data
if data.ndim == 4:
data = data[0, 0, :, :]
header = vast_fits[0].header
wcs = WCS(header, naxis=2)
binary = (~np.isnan(data)).astype(int)
mask = _distance_from_edge(binary)
x, y = np.where(mask == 1)
# need to know when to reverse by checking axis sizes.
pixels = np.column_stack((y, x))
coords = SkyCoord(wcs.wcs_pix2world(
pixels, 0), unit="deg", frame="icrs")
moc = MOC.from_polygon_skycoord(coords, max_depth=max_depth)
del binary
gc.collect()
return moc
create_source_directories(outdir, sources)
¶
Create directory for all sources in a list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
outdir | str | Base directory. | required |
sources | List[str] | List of source names. | required |
Returns:
Type | Description |
---|---|
None | None |
Source code in vasttools/utils.py
def create_source_directories(outdir: str, sources: List[str]) -> None:
"""
Create directory for all sources in a list.
Args:
outdir: Base directory.
sources: List of source names.
Returns:
None
"""
logger = logging.getLogger()
for i in sources:
name = i.replace(" ", "_").replace("/", "_")
name = os.path.join(outdir, name)
os.makedirs(name)
crosshair()
¶
A wrapper function to set the crosshair marker in matplotlib using the function written by L. A. Boogaard.
Returns:
Type | Description |
---|---|
None | None |
Source code in vasttools/utils.py
def crosshair() -> None:
"""
A wrapper function to set the crosshair marker in
matplotlib using the function written by L. A. Boogaard.
Returns:
None
"""
matplotlib.markers.MarkerStyle._set_crosshair = _set_crosshair
matplotlib.markers.MarkerStyle.markers['c'] = 'crosshair'
matplotlib.lines.Line2D.markers = matplotlib.markers.MarkerStyle.markers
filter_selavy_components(selavy_df, selavy_sc, imsize, target)
¶
Create a shortened catalogue by filtering out selavy components outside of the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
selavy_df | DataFrame | Dataframe of selavy components. | required |
selavy_sc | SkyCoord | SkyCoords containing selavy components. | required |
imsize | Union[astropy.coordinates.angles.Angle, Tuple[astropy.coordinates.angles.Angle, astropy.coordinates.angles.Angle]] | Size of the image along each axis. Can be a single Angle object or a tuple of two Angle objects. | required |
target | SkyCoord | SkyCoord of target centre. | required |
Returns:
Type | Description |
---|---|
DataFrame | Shortened catalogue. |
Source code in vasttools/utils.py
def filter_selavy_components(
selavy_df: pd.DataFrame,
selavy_sc: SkyCoord,
imsize: Union[Angle, Tuple[Angle, Angle]],
target: SkyCoord
) -> pd.DataFrame:
"""
Create a shortened catalogue by filtering out selavy components
outside of the image.
Args:
selavy_df: Dataframe of selavy components.
selavy_sc: SkyCoords containing selavy components.
imsize: Size of the image along each axis. Can be a single Angle
object or a tuple of two Angle objects.
target: SkyCoord of target centre.
Returns:
Shortened catalogue.
"""
seps = target.separation(selavy_sc)
mask = seps <= imsize / 1.4
return selavy_df[mask].reset_index(drop=True)
gen_skycoord_from_df(df, ra_col='ra', dec_col='dec', ra_unit=Unit("deg"), dec_unit=Unit("deg"))
¶
Create a SkyCoord object from a provided dataframe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df | DataFrame | A dataframe containing the RA and Dec columns. | required |
ra_col | str | The column to use for the Right Ascension, defaults to 'ra'. | 'ra' |
dec_col | str | The column to use for the Declination, defaults to 'dec'. | 'dec' |
ra_unit | Unit | The unit of the RA column, defaults to degrees. Must be an astropy.unit value. | Unit("deg") |
dec_unit | Unit | The unit of the Dec column, defaults to degrees. Must be an astropy.unit value. | Unit("deg") |
Returns:
Type | Description |
---|---|
SkyCoord | SkyCoord object |
Source code in vasttools/utils.py
def gen_skycoord_from_df(
df: pd.DataFrame,
ra_col: str = 'ra',
dec_col: str = 'dec',
ra_unit: u.Unit = u.degree,
dec_unit: u.Unit = u.degree
) -> SkyCoord:
"""
Create a SkyCoord object from a provided dataframe.
Args:
df: A dataframe containing the RA and Dec columns.
ra_col: The column to use for the Right Ascension, defaults to 'ra'.
dec_col: The column to use for the Declination, defaults to 'dec'.
ra_unit: The unit of the RA column, defaults to degrees. Must be
an astropy.unit value.
dec_unit: The unit of the Dec column, defaults to degrees. Must be
an astropy.unit value.
Returns:
SkyCoord object
"""
sc = SkyCoord(
df[ra_col].values, df[dec_col].values, unit=(ra_unit, dec_unit)
)
return sc
get_logger(debug, quiet, logfile=None)
¶
Set up the logger.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
debug | bool | Set stream level to debug. | required |
quiet | bool | Suppress all non-essential output. | required |
logfile | str | File to output log to. | None |
Returns:
Type | Description |
---|---|
RootLogger | Logger object. |
Source code in vasttools/utils.py
def get_logger(
debug: bool,
quiet: bool,
logfile: str = None
) -> logging.RootLogger:
"""
Set up the logger.
Args:
debug: Set stream level to debug.
quiet: Suppress all non-essential output.
logfile: File to output log to.
Returns:
Logger object.
"""
logger = logging.getLogger()
s = logging.StreamHandler()
if logfile is not None:
fh = logging.FileHandler(logfile)
fh.setLevel(logging.DEBUG)
logformat = '[%(asctime)s] - %(levelname)s - %(message)s'
if use_colorlog:
formatter = colorlog.ColoredFormatter(
"%(log_color)s[%(asctime)s] - %(levelname)s - %(blue)s%(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
reset=True,
log_colors={
'DEBUG': 'cyan',
'INFO': 'green',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'red,bg_white', },
secondary_log_colors={},
style='%'
)
else:
formatter = logging.Formatter(logformat, datefmt="%Y-%m-%d %H:%M:%S")
s.setFormatter(formatter)
if debug:
s.setLevel(logging.DEBUG)
else:
if quiet:
s.setLevel(logging.WARNING)
else:
s.setLevel(logging.INFO)
logger.addHandler(s)
if logfile is not None:
fh.setFormatter(formatter)
logger.addHandler(fh)
logger.setLevel(logging.DEBUG)
install_mp_handler(logger=logger)
return logger
match_planet_to_field(group, sep_thresh=4.0)
¶
Processes a dataframe that contains observational info and calculates whether a planet is within 'sep_thresh' degrees of the observation.
Used as part of groupby functions hence the argument is a group.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
group | DataFrame | Required columns are planet, DATEOBS, centre-ra and centre-dec. | required |
sep_thresh | float | The separation threshold for the planet position to the field centre. If the planet is lower than this value then the planet is considered to be in the field. Unit is degrees. | 4.0 |
Returns:
Type | Description |
---|---|
DataFrame | The group with planet location information added and filtered for only those which are within 'sep_thresh' degrees. Hence an empty dataframe could be returned. |
Source code in vasttools/utils.py
def match_planet_to_field(
group: pd.DataFrame, sep_thresh: float = 4.0
) -> pd.DataFrame:
"""
Processes a dataframe that contains observational info
and calculates whether a planet is within 'sep_thresh' degrees of the
observation.
Used as part of groupby functions hence the argument
is a group.
Args:
group: Required columns are planet, DATEOBS, centre-ra and centre-dec.
sep_thresh: The separation threshold for the planet position to the
field centre. If the planet is lower than this value then the
planet is considered to be in the field. Unit is degrees.
Returns:
The group with planet location information added and
filtered for only those which are within 'sep_thresh' degrees. Hence
an empty dataframe could be returned.
"""
if group.empty:
return
planet = group.iloc[0]['planet']
dates = Time(group['DATEOBS'].tolist())
fields_skycoord = SkyCoord(
group['centre-ra'].values,
group['centre-dec'].values,
unit=(u.deg, u.deg)
)
ol = vts.get_askap_observing_location()
with solar_system_ephemeris.set('builtin'):
planet_coords = get_body(planet, dates, ol)
seps = planet_coords.separation(
fields_skycoord
)
group['ra'] = planet_coords.ra.deg
group['dec'] = planet_coords.dec.deg
group['sep'] = seps.deg
group = group.loc[
group['sep'] < sep_thresh
]
return group
open_fits(fits_path, memmap=True)
¶
This function opens both compressed and uncompressed fits files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fits_path | Union[str, pathlib.Path] | Path to the fits file | required |
memmap | Optional[bool] | Open the fits file with mmap. | True |
Returns:
Type | Description |
---|---|
HDUList loaded from the fits file |
Exceptions:
Type | Description |
---|---|
ValueError | File extension must be .fits or .fits.fz |
Source code in vasttools/utils.py
def open_fits(fits_path: Union[str, Path], memmap: Optional[bool]=True):
"""
This function opens both compressed and uncompressed fits files.
Args:
fits_path: Path to the fits file
memmap: Open the fits file with mmap.
Returns:
HDUList loaded from the fits file
Raises:
ValueError: File extension must be .fits or .fits.fz
"""
if type(fits_path) == Path:
fits_path = str(fits_path)
hdul = fits.open(fits_path, memmap=memmap)
if len(hdul) == 1:
return hdul
elif type(hdul[1]) == fits.hdu.compressed.CompImageHDU:
return fits.HDUList(hdul[1:])
else:
return hdul
pipeline_get_eta_metric(df, peak=False)
¶
Calculates the eta variability metric of a source. Works on the grouped by dataframe using the fluxes of the associated measurements.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df | DataFrame | A dataframe containing the grouped measurements, i.e. only the measurements from one source. Requires the flux_int/peak and flux_peak/int_err columns. | required |
peak | bool | Whether to use peak flux instead of integrated, defaults to False. | False |
Returns eta: The eta variability metric.
Source code in vasttools/utils.py
def pipeline_get_eta_metric(df: pd.DataFrame, peak: bool = False) -> float:
"""
Calculates the eta variability metric of a source.
Works on the grouped by dataframe using the fluxes
of the associated measurements.
Args:
df: A dataframe containing the grouped measurements, i.e. only
the measurements from one source. Requires the flux_int/peak and
flux_peak/int_err columns.
peak: Whether to use peak flux instead of integrated, defaults to
False.
Returns eta:
The eta variability metric.
"""
if df.shape[0] == 1:
return 0.
suffix = 'peak' if peak else 'int'
weights = 1. / df[f'flux_{suffix}_err'].values**2
fluxes = df[f'flux_{suffix}'].values
eta = (df.shape[0] / (df.shape[0] - 1)) * (
(weights * fluxes**2).mean() - (
(weights * fluxes).mean()**2 / weights.mean()
)
)
return eta
pipeline_get_variable_metrics(df)
¶
Calculates the variability metrics of a source. Works on the grouped by dataframe using the fluxes of the associated measurements.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df | DataFrame | A dataframe containing the grouped measurements, i.e. only the measurements from one source. Requires the flux_int/peak and flux_peak/int_err columns. | required |
Returns:
Type | Description |
---|---|
Series | The variability metrics, v_int, v_peak, eta_int and eta_peak as a pandas series. |
Source code in vasttools/utils.py
def pipeline_get_variable_metrics(df: pd.DataFrame) -> pd.Series:
"""
Calculates the variability metrics of a source. Works on the grouped by
dataframe using the fluxes of the associated measurements.
Args:
df: A dataframe containing the grouped measurements, i.e. only
the measurements from one source. Requires the flux_int/peak and
flux_peak/int_err columns.
Returns:
The variability metrics, v_int, v_peak, eta_int and eta_peak
as a pandas series.
"""
d = {}
if df.shape[0] == 1:
d['v_int'] = 0.
d['v_peak'] = 0.
d['eta_int'] = 0.
d['eta_peak'] = 0.
else:
d['v_int'] = df['flux_int'].std() / df['flux_int'].mean()
d['v_peak'] = df['flux_peak'].std() / df['flux_peak'].mean()
d['eta_int'] = pipeline_get_eta_metric(df)
d['eta_peak'] = pipeline_get_eta_metric(df, peak=True)
return pd.Series(d)
read_selavy(selavy_path, cols=None)
¶
Load a selavy catalogue from file. Can handle VOTables and csv files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
selavy_path | str | Path to the file. | required |
cols | Optional[List[str]] | Columns to use. Defaults to None, which returns all columns. | None |
Returns:
Type | Description |
---|---|
DataFrame | Dataframe containing the catalogue. |
Source code in vasttools/utils.py
def read_selavy(
selavy_path: str,
cols: Optional[List[str]] = None
) -> pd.DataFrame:
"""
Load a selavy catalogue from file. Can handle VOTables and csv files.
Args:
selavy_path: Path to the file.
cols: Columns to use. Defaults to None, which returns all columns.
Returns:
Dataframe containing the catalogue.
"""
if selavy_path.endswith(".xml") or selavy_path.endswith(".vot"):
df = Table.read(
selavy_path, format="votable", use_names_over_ids=True
).to_pandas()
if cols is not None:
df = df[df.columns.intersection(cols)]
elif selavy_path.endswith(".csv"):
# CSVs from CASDA have all lowercase column names
df = pd.read_csv(selavy_path, usecols=cols).rename(
columns={"spectral_index_from_tt": "spectral_index_from_TT"}
)
else:
df = pd.read_fwf(selavy_path, skiprows=[1], usecols=cols)
# Force all flux values to be positive
for colname in ['flux_peak', 'flux_peak_err', 'flux_int', 'flux_int_err']:
if colname in df.columns:
df[colname] = df[colname].abs()
return df
simbad_search(objects, logger=None)
¶
Searches SIMBAD for object coordinates and returns coordinates and names
Parameters:
Name | Type | Description | Default |
---|---|---|---|
objects | List[str] | List of object names to query. | required |
logger | Optional[logging.RootLogger] | Logger to use, defaults to None. | None |
Returns:
Type | Description |
---|---|
Union[Tuple[astropy.coordinates.sky_coordinate.SkyCoord, List[str]], Tuple[NoneType]] | Coordinates and source names. Each will be NoneType if search fails. |
Exceptions:
Type | Description |
---|---|
Exception | Simbad table length exceeds number of objects queried. |
Source code in vasttools/utils.py
def simbad_search(
objects: List[str],
logger: Optional[logging.RootLogger] = None
) -> Union[Tuple[SkyCoord, List[str]], Tuple[None, None]]:
"""
Searches SIMBAD for object coordinates and returns coordinates and names
Args:
objects: List of object names to query.
logger: Logger to use, defaults to None.
Returns:
Coordinates and source names. Each will be NoneType if search fails.
Raises:
Exception: Simbad table length exceeds number of objects queried.
"""
if logger is None:
logger = logging.getLogger()
Simbad.add_votable_fields('ra(d)', 'dec(d)', 'typed_id')
try:
result_table = Simbad.query_objects(objects)
if result_table is None:
return None, None
ra = result_table['RA_d']
dec = result_table['DEC_d']
c = SkyCoord(ra, dec, unit=(u.deg, u.deg))
simbad_names = np.array(result_table['TYPED_ID'])
if len(simbad_names) > len(objects):
raise Exception("Returned Simbad table is longer than the number "
"of queried objects. You likely have a malformed "
"object name in your query."
)
return c, simbad_names
# TODO: This needs better handling below.
except Exception as e:
logger.debug(
"Error in performing the SIMBAD object search!\nError: %s",
e, exc_info=True
)
return None, None
strip_fieldnames(fieldnames)
¶
Some field names have historically used the interleaving naming scheme, but that has changed as of January 2023. This function removes the "A" that is on the end of the field names
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fieldnames | Series | Series to strip field names from | required |
Returns:
Type | Description |
---|---|
Series | Series with stripped field names |
Source code in vasttools/utils.py
def strip_fieldnames(fieldnames: pd.Series) -> pd.Series:
"""
Some field names have historically used the interleaving naming scheme,
but that has changed as of January 2023. This function removes the "A"
that is on the end of the field names
Args:
fieldnames: Series to strip field names from
Returns:
Series with stripped field names
"""
return fieldnames.str.rstrip('A')
Created: July 30, 2024