Skip to content

association.py

This module contains all the functions required to perform source association.

_correct_parallel_source_ids(df, correction)

This function is to correct the source ids after the combination of the associaiton dataframes produced by parallel association - as source ids will be duplicated if left.

Parameters:

Name Type Description Default
df pd.DataFrame

Holds the measurements associated into sources. The output of of the association step (sources_df).

required
correction int

The value to add to the source ids.

required

Returns:

Type Description
pd.DataFrame

The input df with corrected source ids and relations.

Source code in vast_pipeline/pipeline/association.py
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
def _correct_parallel_source_ids(
    df: pd.DataFrame, correction: int) -> pd.DataFrame:
    """
    This function is to correct the source ids after the combination of
    the associaiton dataframes produced by parallel association - as source
    ids will be duplicated if left.

    Args:
        df:
            Holds the measurements associated into sources. The output of
            of the association step (sources_df).
        correction:
            The value to add to the source ids.

    Returns:
        The input df with corrected source ids and relations.
    """
    df['source'] = df['source'].values + correction
    related_mask = df['related'].notna()

    new_relations = df.loc[
        related_mask, 'related'
    ].explode() + correction

    df.loc[
        df[related_mask].index.values, 'related'
    ] = new_relations.groupby(level=0).apply(
        lambda x: x.values.tolist()
    )

    return df

_correct_parallel_source_ids_add_mode(df, done_source_ids, start_elem)

This function is to correct the source ids after the combination of the associaiton dataframes produced by parallel association - as source ids will be duplicated if left - specifically for add mode.

When add mode is being used the 'old' sources require the ID to remain the same with only the new ones being changed. The next start elem also needs to be dynamically updated with every skyreg_group loop.

Parameters:

Name Type Description Default
df pd.DataFrame

Holds the measurements associated into sources. The output of of the association step (sources_df).

required
done_source_ids List[int]

A list of the 'old' source ids that need to remain the same.

required
start_elem int

The start elem number for the new source ids.

required

Returns:

Type Description
pd.DataFrame

The input df with corrected source ids and relations, and the new

int

start elem for the next group.

Source code in vast_pipeline/pipeline/association.py
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
def _correct_parallel_source_ids_add_mode(
    df: pd.DataFrame, done_source_ids: List[int],
    start_elem: int) -> Tuple[pd.DataFrame, int]:
    """
    This function is to correct the source ids after the combination of
    the associaiton dataframes produced by parallel association - as source
    ids will be duplicated if left - specifically for add mode.

    When add mode is being used the 'old' sources require the ID to remain
    the same with only the new ones being changed. The next start elem also
    needs to be dynamically updated with every skyreg_group loop.

    Args:
        df:
            Holds the measurements associated into sources. The output of of
            the association step (sources_df).
        done_source_ids:
            A list of the 'old' source ids that need to remain the same.
        start_elem:
            The start elem number for the new source ids.

    Returns:
        The input df with corrected source ids and relations, and the new
        start elem for the next group.
    """
    # When using add_mode the correction becomes easier with the increment
    # as there's a clear difference between old and new.
    # old ones do not need to be corrected

    # get a mask of those that need to be corrected
    to_correct_mask = ~df['source'].isin(done_source_ids)

    # check that there are any to correct
    if not np.any(to_correct_mask):
        # there are no ids to correct we can just return the input
        # next start elem is just the same as the input as well
        return df[['source', 'related']], start_elem

    # create a new column for the new id
    df['new_source'] = df['source']
    # how many unique new sources
    to_correct_source_ids = df.loc[to_correct_mask, 'source'].unique()
    # create the range of new ids
    new_ids = list(
        range(start_elem, start_elem + to_correct_source_ids.shape[0]))
    # create a map of old source to new source
    source_id_map = dict(zip(to_correct_source_ids, new_ids))
    # get and apply the new ids to the new column
    df.loc[to_correct_mask, 'new_source'] = (
        df.loc[to_correct_mask, 'new_source'].map(source_id_map)
    )
    # regenrate the map
    source_id_map = dict(zip(df.source.values, df.new_source.values))
    # get mask of non-nan relations
    related_mask = df['related'].notna()
    # get the relations
    new_relations = df.loc[related_mask, 'related'].explode()
    # map the new values
    new_relations = new_relations.map(source_id_map)
    # group them back and form lists again
    new_relations = new_relations.groupby(level=0).apply(
        lambda x: x.values.tolist())
    # apply corrected relations to results
    df.loc[df[related_mask].index.values, 'related'] = new_relations
    # drop the old sources and replace
    df = df.drop('source', axis=1).rename(columns={'new_source': 'source'})
    # define what the next start elem will be
    next_start_elem = new_ids[-1] + 1

    return df[['source', 'related']], next_start_elem

advanced_association(method, sources_df, skyc1_srcs, skyc1, skyc2_srcs, skyc2, dr_limit, bw_max, id_incr_par_assoc=0)

The loop for advanced source association that uses the astropy 'search_around_sky' function (i.e. all matching sources are found). The BMAJ of the image * the user supplied beamwidth limit is the base distance for association. This is followed by calculating the 'de Ruiter' radius.

Parameters:

Name Type Description Default
method str

The advanced association method 'advanced' or 'deruiter'.

required
sources_df pd.DataFrame

The dataframe containing all current measurements along with their association source and relations.

required
skyc1_srcs pd.DataFrame

The same structure as sources_df but only has one entry per 'source' along with a weighted average sky position of the current assoociated sources.

required
skyc1 SkyCoord

A SkyCoord object with the weighted average sky positions from skyc1_srcs.

required
skyc2_srcs pd.DataFrame

The same structure as sources_df containing the measurements to be associated.

required
skyc2 SkyCoord

A SkyCoord object with the sky positions from skyc2_srcs.

required
dr_limit float

The de Ruiter radius limit to use (applies to de ruiter only).

required
bw_max float

The beamwidth limit to use (applies to de ruiter only).

required
id_incr_par_assoc int

An increment value to be applied to source numbering when adding new sources to the associations (applies when parallel and add image are being used). Defaults to 0.

0

Returns:

Type Description
pd.DataFrame

The output sources_df containing all input measurements along with the association and relation information.

pd.DataFrame

The output skyc1_srcs with updated with new sources from the association.

Source code in vast_pipeline/pipeline/association.py
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
def advanced_association(
        method: str, sources_df: pd.DataFrame, skyc1_srcs: pd.DataFrame,
        skyc1: SkyCoord, skyc2_srcs: pd.DataFrame, skyc2: SkyCoord,
        dr_limit: float, bw_max: float, id_incr_par_assoc: int=0
    ) -> Tuple[pd.DataFrame, pd.DataFrame]:
    '''
    The loop for advanced source association that uses the astropy
    'search_around_sky' function (i.e. all matching sources are
    found). The BMAJ of the image * the user supplied beamwidth
    limit is the base distance for association. This is followed
    by calculating the 'de Ruiter' radius.

    Args:
        method:
            The advanced association method 'advanced' or 'deruiter'.
        sources_df:
            The dataframe containing all current measurements along with their
            association source and relations.
        skyc1_srcs:
            The same structure as sources_df but only has one entry per
            'source' along with a weighted average sky position of the current
            assoociated sources.
        skyc1:
            A SkyCoord object with the weighted average sky positions from
            skyc1_srcs.
        skyc2_srcs:
            The same structure as sources_df containing the measurements to be
            associated.
        skyc2:
            A SkyCoord object with the sky positions from skyc2_srcs.
        dr_limit:
            The de Ruiter radius limit to use (applies to de ruiter only).
        bw_max:
            The beamwidth limit to use (applies to de ruiter only).
        id_incr_par_assoc:
            An increment value to be applied to source numbering when adding
            new sources to the associations (applies when parallel and add
            image are being used). Defaults to 0.

    Returns:
        The output sources_df containing all input measurements along with the
            association and relation information.
        The output skyc1_srcs with updated with new sources from the
            association.
    '''
    # read the needed sources fields
    # Step 1: get matches within semimajor axis of image.
    idx_skyc1, idx_skyc2, d2d, d3d = skyc2.search_around_sky(
        skyc1, bw_max
    )

    # Step 2: merge the candidates so the de ruiter can be calculated
    temp_skyc1_srcs = (
        skyc1_srcs.loc[idx_skyc1]
        .reset_index()
        .rename(columns={'index': 'index_old'})
    )
    temp_skyc2_srcs = (
        skyc2_srcs.loc[idx_skyc2]
        .reset_index()
        .rename(columns={'index': 'index_old'})
    )

    temp_skyc2_srcs['d2d'] = d2d.arcsec
    temp_srcs = temp_skyc1_srcs.merge(
        temp_skyc2_srcs,
        left_index=True,
        right_index=True,
        suffixes=('_skyc1', '_skyc2')
    )

    del temp_skyc1_srcs, temp_skyc2_srcs

    # Step 3: Apply the beamwidth limit
    temp_srcs = temp_srcs[d2d <= bw_max].copy()

    # Step 4: Calculate and perform De Ruiter radius cut
    if method == 'deruiter':
        temp_srcs['dr'] = calc_de_ruiter(temp_srcs)
        temp_srcs = temp_srcs[temp_srcs['dr'] <= dr_limit]
    else:
        temp_srcs['dr'] = 0.

    # Now have the 'good' matches
    # Step 5: Check for one-to-many, many-to-one and many-to-many
    # associations. First the many-to-many
    temp_srcs = many_to_many_advanced(temp_srcs, method)

    # Next one-to-many
    # Get the sources which are doubled
    temp_srcs, sources_df = one_to_many_advanced(
        temp_srcs, sources_df, method, id_incr_par_assoc
    )

    # Finally many-to-one associations, the opposite of above but we
    # don't have to create new ids for these so it's much simpler in fact
    # we don't need to do anything but lets get the number for debugging.
    temp_srcs = many_to_one_advanced(temp_srcs)

    # Now everything in place to append
    # First the skyc2 sources with a match.
    # This is created from the temp_srcs df.
    # This will take care of the extra skyc2 sources needed.
    skyc2_srcs_toappend = skyc2_srcs.loc[
        temp_srcs['index_old_skyc2'].values
    ].reset_index(drop=True)
    skyc2_srcs_toappend['source'] = temp_srcs['source_skyc1'].values
    skyc2_srcs_toappend['related'] = temp_srcs['related_skyc1'].values
    skyc2_srcs_toappend['dr'] = temp_srcs['dr'].values

    # and get the skyc2 sources with no match
    logger.info(
        'Updating sources catalogue with new sources...'
    )
    new_sources = skyc2_srcs.loc[
        skyc2_srcs.index.difference(
            temp_srcs['index_old_skyc2'].values
        )
    ].reset_index(drop=True)
    # update the src numbers for those sources in skyc2 with no match
    # using the max current src as the start and incrementing by one
    start_elem = sources_df['source'].values.max() + 1 + id_incr_par_assoc
    new_sources['source'] = np.arange(
        start_elem,
        start_elem + new_sources.shape[0],
        dtype=int
    )
    skyc2_srcs_toappend = skyc2_srcs_toappend.append(
        new_sources, ignore_index=True
    )

    # and skyc2 is now ready to be appended to source_df
    sources_df = sources_df.append(
        skyc2_srcs_toappend, ignore_index=True
    ).reset_index(drop=True)

    # update skyc1 and df for next association iteration
    # calculate average angles for skyc1
    skyc1_srcs = (
        skyc1_srcs.append(new_sources, ignore_index=True)
        .reset_index(drop=True)
    )

    # also need to append any related sources that created a new
    # source, we can use the skyc2_srcs_toappend to get these
    skyc1_srcs = skyc1_srcs.append(
        skyc2_srcs_toappend.loc[
            ~skyc2_srcs_toappend.source.isin(skyc1_srcs.source)
        ]
    )

    return sources_df, skyc1_srcs

association(images_df, limit, dr_limit, bw_limit, duplicate_limit, config, add_mode, previous_parquets, done_images_df, id_incr_par_assoc=0, parallel=False)

The main association function that does the common tasks between basic and advanced modes.

Parameters:

Name Type Description Default
images_df pd.DataFrame

The input images to be associated.

required
limit Angle

The association limit to use (applies to basic and advanced only).

required
dr_limit float

The de Ruiter radius limit to use (applies to de ruiter only).

required
bw_limit float

The beamwidth limit to use (applies to de ruiter only).

required
duplicate_limit Angle

The limit of separation for which a measurement is considered to be a duplicate (epoch based association).

required
config PipelineConfig

The pipeline configuration object.

required
add_mode bool

Whether the pipeline is currently being run in add image mode.

required
previous_parquets Dict[str, str]

Dictionary containing the paths of the previous successful run parquet files (used in add image mode).

required
done_images_df pd.DataFrame

Datafraame containing the images of the previous successful run (used in add image mode).

required
id_incr_par_assoc int

An increment value to be applied to source numbering when adding new sources to the associations (applies when parallel and add image are being used). Defaults to 0.

0
parallel bool

Whether parallel association is being used.

False

Returns:

Type Description
pd.DataFrame

The output sources_df containing all input measurements along with the association and relation information.

Raises:

Type Description
Exception

Raised if association method is not valid.

Source code in vast_pipeline/pipeline/association.py
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
def association(images_df: pd.DataFrame, limit: Angle, dr_limit: float,
    bw_limit: float, duplicate_limit: Angle, config: PipelineConfig, add_mode: bool,
    previous_parquets: Dict[str, str], done_images_df: pd.DataFrame,
    id_incr_par_assoc: int=0, parallel: bool=False) -> pd.DataFrame:
    '''
    The main association function that does the common tasks between basic
    and advanced modes.

    Args:
        images_df:
            The input images to be associated.
        limit:
            The association limit to use (applies to basic and advanced only).
        dr_limit:
            The de Ruiter radius limit to use (applies to de ruiter only).
        bw_limit:
            The beamwidth limit to use (applies to de ruiter only).
        duplicate_limit:
            The limit of separation for which a measurement is considered to
            be a duplicate (epoch based association).
        config:
            The pipeline configuration object.
        add_mode:
            Whether the pipeline is currently being run in add image mode.
        previous_parquets:
            Dictionary containing the paths of the previous successful run
            parquet files (used in add image mode).
        done_images_df:
            Datafraame containing the images of the previous successful run
            (used in add image mode).
        id_incr_par_assoc:
            An increment value to be applied to source numbering when adding
            new sources to the associations (applies when parallel and add
            image are being used). Defaults to 0.
        parallel:
            Whether parallel association is being used.

    Returns:
        The output sources_df containing all input measurements along with the
            association and relation information.

    Raises:
        Exception: Raised if association method is not valid.
    '''
    timer = StopWatch()

    if parallel:
        images_df = (
            images_df.sort_values(by='image_datetime')
            .drop('image_datetime', axis=1)
        )

    if 'skyreg_group' in images_df.columns:
        skyreg_group = images_df['skyreg_group'].iloc[0]
        skyreg_tag = " (sky region group %s)" % skyreg_group
    else:
        skyreg_group = -1
        skyreg_tag = ""

    method = config["source_association"]["method"]

    logger.info('Starting association%s.', skyreg_tag)
    logger.info('Association mode selected: %s.', method)

    unique_epochs = np.sort(images_df['epoch'].unique())

    if add_mode:
        # Here the skyc1_srcs and sources_df are recreated and the done images
        # are filtered out.
        image_mask = images_df['image_name'].isin(done_images_df['name'])
        images_df_done = images_df[image_mask].copy()
        sources_df, skyc1_srcs = reconstruct_associtaion_dfs(
            images_df_done,
            previous_parquets,
        )
        images_df = images_df.loc[~image_mask]
        if images_df.empty:
            logger.info(
                'No new images found, stopping association%s.', skyreg_tag
            )
            sources_df['interim_ew'] = (
                sources_df['ra_source'].values * sources_df['weight_ew'].values
            )
            sources_df['interim_ns'] = (
                sources_df['dec_source'].values * sources_df['weight_ns'].values
            )
            return (
                sources_df
                .drop(['ra', 'dec'], axis=1)
                .rename(columns={'ra_source': 'ra', 'dec_source': 'dec'})
            )
        logger.info(
            f'Found {images_df.shape[0]} images to add to the run{skyreg_tag}.')
        # re-get the unique epochs
        unique_epochs = np.sort(images_df['epoch'].unique())
        start_epoch = 0

    else:
        # Do full set up for a new run.
        first_images = (
            images_df
            .loc[images_df['epoch'] == unique_epochs[0], 'image_dj']
            .to_list()
        )

        # initialise sky source dataframe
        skyc1_srcs = prep_skysrc_df(
            first_images,
            config["measurements"]["flux_fractional_error"],
            duplicate_limit,
            ini_df=True
        )
        skyc1_srcs['epoch'] = unique_epochs[0]
        # create base catalogue
        # initialise the sources dataframe using first image as base
        sources_df = skyc1_srcs.copy()
        start_epoch = 1

    if unique_epochs.shape[0] == 1 and not add_mode:
        # This means only one image is present - or one group of images (epoch
        # mode) - so the same approach as above in add mode where there are no
        # images to be added, the interim needs to be calculated and skyc1_srcs
        # can just be returned as sources_df. ra_source and dec_source can just
        # be dropped as the ra and dec are already the average values.
        logger.warning(
            'No images to associate with!%s.', skyreg_tag
        )
        logger.info(
            'Returning base sources only%s.', skyreg_tag
        )
        # reorder the columns to match Dask expectations (parallel)
        skyc1_srcs = skyc1_srcs[[
            'id', 'uncertainty_ew', 'weight_ew', 'uncertainty_ns', 'weight_ns',
            'flux_int', 'flux_int_err', 'flux_int_isl_ratio', 'flux_peak',
            'flux_peak_err', 'flux_peak_isl_ratio', 'forced', 'compactness',
            'has_siblings', 'snr', 'image', 'datetime', 'source', 'ra', 'dec',
            'ra_source', 'dec_source', 'd2d', 'dr', 'related', 'epoch',
        ]]
        skyc1_srcs['interim_ew'] = (
            skyc1_srcs['ra'].values * skyc1_srcs['weight_ew'].values
        )
        skyc1_srcs['interim_ns'] = (
            skyc1_srcs['dec'].values * skyc1_srcs['weight_ns'].values
        )

        return skyc1_srcs.drop(['ra_source', 'dec_source'], axis=1)

    skyc1 = SkyCoord(
        skyc1_srcs['ra'].values,
        skyc1_srcs['dec'].values,
        unit=(u.deg, u.deg)
    )

    for it, epoch in enumerate(unique_epochs[start_epoch:]):
        logger.info('Association iteration: #%i%s', it + 1, skyreg_tag)
        # load skyc2 source measurements and create SkyCoord
        images = (
            images_df.loc[images_df['epoch'] == epoch, 'image_dj'].to_list()
        )
        max_beam_maj = (
            images_df.loc[images_df['epoch'] == epoch, 'image_dj']
            .apply(lambda x: x.beam_bmaj)
            .max()
        )
        skyc2_srcs = prep_skysrc_df(
            images,
            config["measurements"]["flux_fractional_error"],
            duplicate_limit
        )

        skyc2_srcs['epoch'] = epoch
        skyc2 = SkyCoord(
            skyc2_srcs['ra'].values,
            skyc2_srcs['dec'].values,
            unit=(u.deg, u.deg)
        )

        if method == 'basic':
            sources_df, skyc1_srcs = basic_association(
                sources_df,
                skyc1_srcs,
                skyc1,
                skyc2_srcs,
                skyc2,
                limit,
                id_incr_par_assoc
            )

        elif method in ['advanced', 'deruiter']:
            if method == 'deruiter':
                bw_max = Angle(
                    bw_limit * (max_beam_maj * 3600. / 2.) * u.arcsec
                )
            else:
                bw_max = limit
            sources_df, skyc1_srcs = advanced_association(
                method,
                sources_df,
                skyc1_srcs,
                skyc1,
                skyc2_srcs,
                skyc2,
                dr_limit,
                bw_max,
                id_incr_par_assoc
            )
        else:
            raise Exception('association method not implemented!')

        logger.info(
            'Calculating weighted average RA and Dec for sources%s...',
            skyreg_tag
        )

        # account for RA wrapping
        ra_wrap_mask = sources_df.ra <= 0.1
        sources_df['ra_wrap'] = sources_df.ra.values
        sources_df.at[
            ra_wrap_mask, 'ra_wrap'
        ] = sources_df[ra_wrap_mask].ra.values + 360.

        sources_df['interim_ew'] = (
            sources_df['ra_wrap'].values * sources_df['weight_ew'].values
        )
        sources_df['interim_ns'] = (
            sources_df['dec'].values * sources_df['weight_ns'].values
        )

        sources_df = sources_df.drop(['ra_wrap'], axis=1)

        tmp_srcs_df = (
            sources_df.loc[
                (sources_df['source'] != -1) & (sources_df['forced'] == False),
                [
                    'ra', 'dec', 'uncertainty_ew', 'uncertainty_ns',
                    'source', 'interim_ew', 'interim_ns', 'weight_ew',
                    'weight_ns'
                ]
            ]
            .groupby('source')
        )

        stats = StopWatch()

        wm_ra = tmp_srcs_df['interim_ew'].sum() / tmp_srcs_df['weight_ew'].sum()
        wm_uncertainty_ew = 1. / np.sqrt(tmp_srcs_df['weight_ew'].sum())

        wm_dec = tmp_srcs_df['interim_ns'].sum() / tmp_srcs_df['weight_ns'].sum()
        wm_uncertainty_ns = 1. / np.sqrt(tmp_srcs_df['weight_ns'].sum())

        weighted_df = (
            pd.concat(
                [wm_ra, wm_uncertainty_ew, wm_dec, wm_uncertainty_ns],
                axis=1,
                sort=False
            )
            .reset_index()
            .rename(
                columns={
                    0: 'ra',
                    'weight_ew': 'uncertainty_ew',
                    1: 'dec',
                    'weight_ns': 'uncertainty_ns'
            })
        )

        # correct the RA wrapping
        ra_wrap_mask = weighted_df.ra >= 360.
        weighted_df.at[
            ra_wrap_mask, 'ra'
        ] = weighted_df[ra_wrap_mask].ra.values - 360.

        logger.debug('Groupby concat time %f', stats.reset())

        logger.info(
            'Finalising base sources catalogue ready for next iteration%s...',
            skyreg_tag
        )

        # merge the weighted ra and dec and replace the values
        skyc1_srcs = skyc1_srcs.merge(
            weighted_df,
            on='source',
            how='left',
            suffixes=('', '_skyc2')
        )
        del tmp_srcs_df, weighted_df
        skyc1_srcs['ra'] = skyc1_srcs['ra_skyc2']
        skyc1_srcs['dec'] = skyc1_srcs['dec_skyc2']
        skyc1_srcs['uncertainty_ew'] = skyc1_srcs['uncertainty_ew_skyc2']
        skyc1_srcs['uncertainty_ns'] = skyc1_srcs['uncertainty_ns_skyc2']
        skyc1_srcs = skyc1_srcs.drop(
            [
                'ra_skyc2',
                'dec_skyc2',
                'uncertainty_ew_skyc2',
                'uncertainty_ns_skyc2'
            ], axis=1
        )

        # generate new sky coord ready for next iteration
        skyc1 = SkyCoord(
            skyc1_srcs['ra'].values,
            skyc1_srcs['dec'].values,
            unit=(u.deg, u.deg)
        )

        # and update relations in skyc1
        skyc1_srcs = skyc1_srcs.drop('related', axis=1)
        relations_unique = pd.DataFrame(
            sources_df[sources_df['related'].notna()]
            .explode('related')
            .groupby('source')['related']
            .apply(lambda x: x.unique().tolist())
        )

        skyc1_srcs = skyc1_srcs.merge(
            relations_unique, how='left', left_on='source', right_index=True
        )

        logger.info(
            'Association iteration #%i complete%s.', it + 1, skyreg_tag
        )

    # End of iteration over images, ra and dec columns are actually the
    # average over each iteration so remove ave ra and ave dec used for
    # calculation and use ra_source and dec_source columns
    sources_df = (
        sources_df.drop(['ra', 'dec'], axis=1)
        .rename(columns={'ra_source': 'ra', 'dec_source': 'dec'})
    )

    del skyc1_srcs, skyc2_srcs

    logger.info(
        'Total association time: %.2f seconds%s.',
        timer.reset_init(),
        skyreg_tag
    )

    return sources_df

basic_association(sources_df, skyc1_srcs, skyc1, skyc2_srcs, skyc2, limit, id_incr_par_assoc=0)

The loop for basic source association that uses the astropy 'match_to_catalog_sky' function (i.e. only the nearest match between the catalogs). A direct on sky separation is used to define the association.

Parameters:

Name Type Description Default
sources_df pd.DataFrame

The dataframe containing all current measurements along with their association source and relations.

required
skyc1_srcs pd.DataFrame

The same structure as sources_df but only has one entry per 'source' along with a weighted average sky position of the current assoociated sources.

required
skyc1 SkyCoord

A SkyCoord object with the weighted average sky positions from skyc1_srcs.

required
skyc2_srcs pd.DataFrame

The same structure as sources_df containing the measurements to be associated.

required
skyc2 SkyCoord

A SkyCoord object with the sky positions from skyc2_srcs.

required
limit Angle

The association limit to use (applies to basic and advanced only).

required
id_incr_par_assoc int

An increment value to be applied to source numbering when adding new sources to the associations (applies when parallel and add image are being used). Defaults to 0.

0

Returns:

Type Description
pd.DataFrame

The output sources_df containing all input measurements along with the association and relation information.

pd.DataFrame

The output skyc1_srcs with updated with new sources from the association.

Source code in vast_pipeline/pipeline/association.py
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
def basic_association(
        sources_df: pd.DataFrame, skyc1_srcs: pd.DataFrame, skyc1: SkyCoord,
        skyc2_srcs: pd.DataFrame, skyc2: SkyCoord, limit: Angle,
        id_incr_par_assoc: int=0
    ) -> Tuple[pd.DataFrame, pd.DataFrame]:
    '''
    The loop for basic source association that uses the astropy
    'match_to_catalog_sky' function (i.e. only the nearest match between
    the catalogs). A direct on sky separation is used to define the association.

    Args:
        sources_df:
            The dataframe containing all current measurements along with their
            association source and relations.
        skyc1_srcs:
            The same structure as sources_df but only has one entry per
            'source' along with a weighted average sky position of the current
            assoociated sources.
        skyc1:
            A SkyCoord object with the weighted average sky positions from
            skyc1_srcs.
        skyc2_srcs:
            The same structure as sources_df containing the measurements to be
            associated.
        skyc2:
            A SkyCoord object with the sky positions from skyc2_srcs.
        limit:
            The association limit to use (applies to basic and advanced only).
        id_incr_par_assoc:
            An increment value to be applied to source numbering when adding
            new sources to the associations (applies when parallel and add
            image are being used). Defaults to 0.

    Returns:
        The output sources_df containing all input measurements along with the
            association and relation information.
        The output skyc1_srcs with updated with new sources from the
            association.
    '''
    # match the new sources to the base
    # idx gives the index of the closest match in the base for skyc2
    idx, d2d, d3d = skyc2.match_to_catalog_sky(skyc1)
    # acceptable selection
    sel = d2d <= limit

    # The good matches can be assinged the src id from base
    skyc2_srcs.loc[sel, 'source'] = skyc1_srcs.loc[idx[sel], 'source'].values
    # Need the d2d to make analysing doubles easier.
    skyc2_srcs.loc[sel, 'd2d'] = d2d[sel].arcsec

    # must check for double matches in the acceptable matches just made
    # this would mean that multiple sources in skyc2 have been matched
    # to the same base source we want to keep closest match and move
    # the other match(es) back to having a -1 src id
    skyc2_srcs, sources_df = one_to_many_basic(
        skyc2_srcs, sources_df, id_incr_par_assoc)

    logger.info('Updating sources catalogue with new sources...')
    # update the src numbers for those sources in skyc2 with no match
    # using the max current src as the start and incrementing by one
    start_elem = sources_df['source'].values.max() + 1 + id_incr_par_assoc
    nan_sel = (skyc2_srcs['source'] == -1).values
    skyc2_srcs.loc[nan_sel, 'source'] = (
        np.arange(
            start_elem,
            start_elem + skyc2_srcs.loc[nan_sel].shape[0],
            dtype=int
        )
    )

    # and skyc2 is now ready to be appended to new sources
    sources_df = sources_df.append(
        skyc2_srcs, ignore_index=True
    ).reset_index(drop=True)

    # and update skyc1 with the sources that were created from the one
    # to many relations and any new sources.
    skyc1_srcs = skyc1_srcs.append(
        skyc2_srcs[
            ~skyc2_srcs['source'].isin(skyc1_srcs['source'])
        ],
        ignore_index=True
    ).reset_index(drop=True)

    return sources_df, skyc1_srcs

calc_de_ruiter(df)

Calculates the unitless 'de Ruiter' radius of the association. Works on the 'temp_df' dataframe of the advanced association, where the two sources associated with each other have been merged into one row.

Parameters:

Name Type Description Default
df pd.DataFrame

The 'temp_df' from advanced association. It must contain the columns ra_skyc1, 'ra_skyc2', 'uncertainty_ew_skyc1', 'uncertainty_ew_skyc2', 'dec_skyc1', 'dec_skyc2', 'uncertainty_ns_skyc1' and 'uncertainty_ns_skyc2'.

required

Returns:

Type Description
np.ndarray

Array containing the de Ruiter radius for all rows in the df.

Source code in vast_pipeline/pipeline/association.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def calc_de_ruiter(df: pd.DataFrame) -> np.ndarray:
    """
    Calculates the unitless 'de Ruiter' radius of the
    association. Works on the 'temp_df' dataframe of the
    advanced association, where the two sources associated
    with each other have been merged into one row.

    Args:
        df:
            The 'temp_df' from advanced association. It must
            contain the columns `ra_skyc1`, 'ra_skyc2', 'uncertainty_ew_skyc1',
            'uncertainty_ew_skyc2', 'dec_skyc1', 'dec_skyc2',
            'uncertainty_ns_skyc1' and 'uncertainty_ns_skyc2'.

    Returns:
        Array containing the de Ruiter radius for all rows in the df.
    """
    ra_1 = df['ra_skyc1'].values
    ra_2 = df['ra_skyc2'].values

    # avoid wrapping issues
    ra_1[ra_1 > 270.] -= 180.
    ra_2[ra_2 > 270.] -= 180.
    ra_1[ra_1 < 90.] += 180.
    ra_2[ra_2 < 90.] += 180.

    ra_1 = np.deg2rad(ra_1)
    ra_2 = np.deg2rad(ra_2)

    ra_1_err = np.deg2rad(df['uncertainty_ew_skyc1'].values)
    ra_2_err = np.deg2rad(df['uncertainty_ew_skyc2'].values)

    dec_1 = np.deg2rad(df['dec_skyc1'].values)
    dec_2 = np.deg2rad(df['dec_skyc2'].values)

    dec_1_err = np.deg2rad(df['uncertainty_ns_skyc1'].values)
    dec_2_err = np.deg2rad(df['uncertainty_ns_skyc2'].values)

    dr1 = (ra_1 - ra_2) * (ra_1 - ra_2)
    dr1_1 = np.cos((dec_1 + dec_2) / 2.)
    dr1 *= dr1_1 * dr1_1
    dr1 /= ra_1_err * ra_1_err + ra_2_err * ra_2_err

    dr2 = (dec_1 - dec_2) * (dec_1 - dec_2)
    dr2 /= dec_1_err * dec_1_err + dec_2_err * dec_2_err

    dr = np.sqrt(dr1 + dr2)

    return dr

many_to_many_advanced(temp_srcs, method)

Finds and processes the many-to-many associations in the advanced association. We do not want to build many-to-many associations as this will make the database get very large (see TraP documentation). The skyc2 sources which are listed more than once are found, and of these, those which have a skyc1 source association which is also listed twice in the associations are selected. The closest (by limit or de Ruiter radius, depending on the method) is kept where as the other associations are dropped.

This follows the same logic used by the TraP (see TraP documentation).

Parameters:

Name Type Description Default
temp_srcs pd.DataFrame

The temporary associtation dataframe used through the advanced association process.

required
method str

Can be either 'advanced' or 'deruiter' to represent the advanced association method being used.

required

Returns:

Type Description
pd.DataFrame

Updated temp_srcs with the many_to_many relations dropped.

Source code in vast_pipeline/pipeline/association.py
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
def many_to_many_advanced(temp_srcs: pd.DataFrame, method: str) -> pd.DataFrame:
    '''
    Finds and processes the many-to-many associations in the advanced
    association. We do not want to build many-to-many associations as
    this will make the database get very large (see TraP documentation).
    The skyc2 sources which are listed more than once are found, and of
    these, those which have a skyc1 source association which is also
    listed twice in the associations are selected. The closest (by
    limit or de Ruiter radius, depending on the method) is kept where
    as the other associations are dropped.

    This follows the same logic used by the TraP (see TraP documentation).

    Args:
        temp_srcs:
            The temporary associtation dataframe used through the advanced
            association process.
        method:
            Can be either 'advanced' or 'deruiter' to represent the advanced
            association method being used.

    Returns:
        Updated temp_srcs with the many_to_many relations dropped.
    '''
    # Select those where the extracted source is listed more than once
    # (e.g. index_old_skyc2 duplicated values) and of these get those that
    # have a source id that is listed more than once (e.g. source_skyc1
    # duplicated values) in the temps_srcs df
    m_to_m = temp_srcs[(
        temp_srcs['index_old_skyc2'].duplicated(keep=False) &
        temp_srcs['source_skyc1'].duplicated(keep=False)
    )].copy()

    if m_to_m.empty:
        logger.debug('No many-to-many assocations.')
        return temp_srcs

    logger.debug(
        'Detected #%i many-to-many assocations, cleaning...',
        m_to_m.shape[0]
    )

    dist_col = 'd2d_skyc2' if method == 'advanced' else 'dr'
    min_col = 'min_' + dist_col

    # get the minimum de ruiter value for each extracted source
    m_to_m[min_col] = (
        m_to_m.groupby('index_old_skyc2')[dist_col]
        .transform('min')
    )
    # get the ids of those crossmatches that are larger than the minimum
    m_to_m_to_drop = m_to_m[m_to_m[dist_col] != m_to_m[min_col]].index.values
    # and drop these from the temp_srcs
    temp_srcs = temp_srcs.drop(m_to_m_to_drop)

    return temp_srcs

many_to_one_advanced(temp_srcs)

Finds and processes the many-to-one associations in the advanced association. In this case in the related column of the 'many' sources we need to append the ids of all the other 'many' (expect for itself).

Parameters:

Name Type Description Default
temp_srcs pd.DataFrame

The temporary associtation dataframe used through the advanced association process.

required

Returns:

Type Description
pd.DataFrame

Updated temp_srcs with all many_to_one relation information added.

Source code in vast_pipeline/pipeline/association.py
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
def many_to_one_advanced(temp_srcs: pd.DataFrame) -> pd.DataFrame:
    '''
    Finds and processes the many-to-one associations in the advanced
    association. In this case in the related column of the 'many' sources
    we need to append the ids of all the other 'many' (expect for itself).

    Args:
        temp_srcs:
            The temporary associtation dataframe used through the advanced
            association process.

    Returns:
        Updated temp_srcs with all many_to_one relation information added.
    '''
    # use only these columns for easy debugging of the dataframe
    cols = [
        'index_old_skyc1', 'id_skyc1', 'source_skyc1', 'd2d_skyc1',
        'related_skyc1', 'index_old_skyc2', 'id_skyc2', 'source_skyc2',
        'd2d_skyc2', 'dr'
    ]

    # select those sources which have been matched to the same measurement
    # in the sky catalogue 2.
    duplicated_skyc2 = temp_srcs.loc[
        temp_srcs['index_old_skyc2'].duplicated(keep=False),
        cols
    ]

    # duplicated_skyc2
    # +-----+-------------------+------------+----------------+-------------
    # |     |   index_old_skyc1 |   id_skyc1 |   source_skyc1 |   d2d_skyc1
    # |-----+-------------------+------------+----------------+-------------
    # | 447 |               477 |        478 |            478 |           0
    # | 448 |               478 |        479 |            479 |           0
    # | 477 |               507 |        508 |            508 |           0
    # | 478 |               508 |        509 |            509 |           0
    # | 695 |               738 |        739 |            739 |           0
    # +-----+-------------------+------------+----------------+-------------
    # +-----------------+-------------------+------------+----------------+
    # | related_skyc1   |   index_old_skyc2 |   id_skyc2 |   source_skyc2 |
    # +-----------------+-------------------+------------+----------------+
    # |                 |               305 |       5847 |             -1 |
    # |                 |               305 |       5847 |             -1 |
    # |                 |               648 |       6190 |             -1 |
    # |                 |               648 |       6190 |             -1 |
    # |                 |               561 |       6103 |             -1 |
    # +-----------------+-------------------+------------+----------------+
    # -------------+------+
    #    d2d_skyc2 |   dr |
    # -------------+------|
    #      8.63598 |    0 |
    #      8.63598 |    0 |
    #      6.5777  |    0 |
    #      6.5777  |    0 |
    #      7.76527 |    0 |
    # -------------+------+

    # if there are none no action is required.
    if duplicated_skyc2.empty:
        logger.debug('No many-to-one associations.')
        return temp_srcs

    logger.debug(
        'Detected #%i many-to-one associations',
        duplicated_skyc2.shape[0]
    )

    # The new relations become that for each 'many' source we need to append
    # the ids of the other 'many' sources that have been associationed with the
    # 'one'. Below for each 'one' group we gather all the ids of the many
    # sources.
    new_relations = pd.DataFrame(
        duplicated_skyc2
        .groupby('index_old_skyc2')
        .apply(lambda grp: grp['source_skyc1'].tolist())
    ).rename(columns={0: 'new_relations'})

    # new_relations
    # +-------------------+-----------------+
    # |   index_old_skyc2 | new_relations   |
    # |-------------------+-----------------|
    # |               305 | [478, 479]      |
    # |               561 | [739, 740]      |
    # |               648 | [508, 509]      |
    # |               764 | [841, 842]      |
    # |               816 | [1213, 1215]    |
    # +-------------------+-----------------+

    # these new relations are then added to the duplciated dataframe so
    # they can easily be used by the next function.
    duplicated_skyc2 = duplicated_skyc2.merge(
        new_relations,
        left_on='index_old_skyc2',
        right_index=True,
        how='left'
    )

    # Remove the 'self' relations. The 'x['source_skyc1']' is an integer so it
    # is placed within a list notation, [], to be able to be easily subtracted
    # from the new_relations.
    duplicated_skyc2['new_relations'] = (
        duplicated_skyc2.apply(
            lambda x: list(set(x['new_relations']) - set([x['source_skyc1']])),
            axis=1
        )
    )

    # Use the 'add_new_many_to_one_relations' method to add tthe new relatitons
    # to the actual `related_skyc1' column.
    duplicated_skyc2['related_skyc1'] = (
        duplicated_skyc2.apply(
            add_new_many_to_one_relations,
            axis=1
        )
    )

    # Transfer the new relations from the duplicated df to the temp_srcs. The
    # index is explicitly declared to avoid any mixups.
    temp_srcs.loc[
        duplicated_skyc2.index.values, 'related_skyc1'
    ] = duplicated_skyc2.loc[
        duplicated_skyc2.index.values, 'related_skyc1'
    ].values

    return temp_srcs

one_to_many_advanced(temp_srcs, sources_df, method, id_incr_par_assoc=0)

Finds and processes the one-to-many associations in the advanced association. For each one-to-many association, the nearest associated source is assigned the original source id, where as the others are given new ids. The original source in skyc1 then is copied to the sources_df to provide the extra association for that source, i.e. it is forked.

This is needed to be separate from the basic version as the data products between the two are different.

Parameters:

Name Type Description Default
temp_srcs pd.DataFrame

The temporary associtation dataframe used through the advanced association process.

required
sources_df pd.DataFrame

The sources_df produced by each step of association holding the current 'sources'.

required
method str

Can be either 'advanced' or 'deruiter' to represent the advanced association method being used.

required
id_incr_par_assoc int

An increment value to add to new source ids when creating them. Mainly useful for add mode with parallel association

0

Returns:

Type Description
pd.DataFrame

Updated temp_srcs and sources_df with all one_to_many relation

pd.DataFrame

information added.

Source code in vast_pipeline/pipeline/association.py
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
def one_to_many_advanced(
    temp_srcs: pd.DataFrame,
    sources_df: pd.DataFrame,
    method: str,
    id_incr_par_assoc: int=0
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    '''
    Finds and processes the one-to-many associations in the advanced
    association. For each one-to-many association, the nearest
    associated source is assigned the original source id, where as
    the others are given new ids. The original source in skyc1 then
    is copied to the sources_df to provide the extra association for
    that source, i.e. it is forked.

    This is needed to be separate from the basic version
    as the data products between the two are different.

    Args:
        temp_srcs:
            The temporary associtation dataframe used through the advanced
            association process.
        sources_df:
            The sources_df produced by each step of association holding
            the current 'sources'.
        method:
            Can be either 'advanced' or 'deruiter' to represent the advanced
            association method being used.
        id_incr_par_assoc:
            An increment value to add to new source ids when creating them.
            Mainly useful for add mode with parallel association

    Returns:
        Updated temp_srcs and sources_df with all one_to_many relation
        information added.
    '''
    # use only these columns for easy debugging of the dataframe
    cols = [
        'index_old_skyc1', 'id_skyc1', 'source_skyc1', 'd2d_skyc1',
        'related_skyc1', 'index_old_skyc2', 'id_skyc2', 'source_skyc2',
        'd2d_skyc2', 'dr'
    ]
    duplicated_skyc1 = temp_srcs.loc[
        temp_srcs['source_skyc1'].duplicated(keep=False), cols
    ].copy()

    # duplicated_skyc1
    # +-----+-------------------+------------+----------------+-------------+
    # |     |   index_old_skyc1 |   id_skyc1 |   source_skyc1 |   d2d_skyc1 |
    # |-----+-------------------+------------+----------------+-------------+
    # | 117 |               121 |        122 |            122 |           0 |
    # | 118 |               121 |        122 |            122 |           0 |
    # | 238 |               253 |        254 |            254 |           0 |
    # | 239 |               253 |        254 |            254 |           0 |
    # | 246 |               261 |        262 |            262 |           0 |
    # +-----+-------------------+------------+----------------+-------------+
    # -----------------+-------------------+------------+----------------+
    #  related_skyc1   |   index_old_skyc2 |   id_skyc2 |   source_skyc2 |
    # -----------------+-------------------+------------+----------------+
    #                  |               526 |       6068 |             -1 |
    #                  |               528 |       6070 |             -1 |
    #                  |               264 |       5806 |             -1 |
    #                  |               265 |       5807 |             -1 |
    #                  |               327 |       5869 |             -1 |
    # -----------------+-------------------+------------+----------------+
    # -------------+------+
    #    d2d_skyc2 |   dr |
    # -------------+------|
    #      3.07478 |    0 |
    #      6.41973 |    0 |
    #      2.04422 |    0 |
    #      6.16881 |    0 |
    #      3.20439 |    0 |
    # -------------+------+

    # If no relations then no action is required
    if duplicated_skyc1.empty:
        logger.debug('No one-to-many associations.')
        return temp_srcs, sources_df

    logger.debug(
        'Detected #%i one-to-many assocations, cleaning...',
        duplicated_skyc1.shape[0]
    )

    # Get the column to check for the minimum depending on the method
    # set the column names needed for filtering the 'to-many'
    # associations depending on the method (advanced or deruiter)
    dist_col = 'd2d_skyc2' if method == 'advanced' else 'dr'

    # go through the doubles and
    # 1. Keep the closest d2d or de ruiter as the primary id
    # 2. Increment a new source id for others
    # 3. Add a copy of the previously matched
    # source into sources.
    # multi_srcs = duplicated_skyc1['source_skyc1'].unique()

    # Get the duplicated, sort by the distance column
    duplicated_skyc1 = duplicated_skyc1.sort_values(
        by=['source_skyc1', dist_col]
    )

    # Get those that need to be given a new ID number (i.e. not the min dist_col)
    idx_to_change = duplicated_skyc1.index.values[
        duplicated_skyc1.duplicated('source_skyc1')
    ]

    # Create a new `new_source_id` column to store the 'correct' IDs
    duplicated_skyc1['new_source_id'] = duplicated_skyc1['source_skyc1']

    # +-----------------+
    # |   new_source_id |
    # +-----------------|
    # |             122 |
    # |             122 |
    # |             254 |
    # |             254 |
    # |             262 |
    # +-----------------+

    # Define the range of new source ids
    start_new_src_id = sources_df['source'].values.max() + 1 + id_incr_par_assoc

    # Create an arange to use to change the ones that need to be changed.
    new_source_ids = np.arange(
        start_new_src_id,
        start_new_src_id + idx_to_change.shape[0],
        dtype=int
    )

    # Assign the new IDs to those that need to be changed.
    duplicated_skyc1.loc[idx_to_change, 'new_source_id'] = new_source_ids

    # We also need to clear the relations for these 'new' sources
    # otherwise it will inherit rogue relations from the original relation
    duplicated_skyc1.loc[idx_to_change, 'related_skyc1'] = None

    # Now we need to sort out the related, essentially here the 'original'
    # and 'non original' need to be treated differently.
    # The original source need all the assoicated new ids appended to the
    # related column.
    # The not_original ones need just the original ID appended.
    not_original = duplicated_skyc1.loc[
        idx_to_change
    ].copy()

    original = duplicated_skyc1.drop_duplicates(
        'source_skyc1'
    ).copy()

    # This gathers all the new ids that need to be appended
    # to the original related column.
    new_original_related = pd.DataFrame(
        not_original[
            ['source_skyc1', 'new_source_id']
        ].groupby('source_skyc1').apply(
            lambda grp: grp['new_source_id'].tolist()
        )
    )

    #new_original_related
    # +----------------+--------+
    # |   source_skyc1 | 0      |
    # |----------------+--------|
    # |            122 | [5542] |
    # |            254 | [5543] |
    # |            262 | [5544] |
    # |            405 | [5545] |
    # |            656 | [5546] |
    # +----------------+--------+

    # Append the relations in each case, using the above 'new_original_related'
    # for the original ones.
    # The not original only require the appending of the original index.
    original['related_skyc1'] = (
        original[['related_skyc1', 'source_skyc1']]
        .apply(
            add_new_one_to_many_relations,
            args=(True, new_original_related),
            axis=1
        )
    )

    # what the column looks like after the above
    # +-----------------+
    # | related_skyc1   |
    # +-----------------+
    # | [5542]          |
    # | [5543]          |
    # | [5544]          |
    # | [5545]          |
    # | [5546]          |
    # +-----------------+

    not_original.loc[:, 'related_skyc1'] = not_original.apply(
        add_new_one_to_many_relations,
        args=(True,),
        axis=1
    )

    # Merge them back together
    duplicated_skyc1 = original.append(not_original)

    del original, not_original

    # Apply the updates to the actual temp_srcs.
    temp_srcs.loc[idx_to_change, 'source_skyc1'] = new_source_ids
    temp_srcs.loc[
        duplicated_skyc1.index.values,
        'related_skyc1'
    ] = duplicated_skyc1.loc[
        duplicated_skyc1.index.values,
        'related_skyc1'
    ].values

    # Finally we need to create copies of the previous sources in the
    # sources_df to complete the new sources.

    # To do this we get only the non-original sources
    duplicated_skyc1 = duplicated_skyc1.loc[
        duplicated_skyc1.duplicated('source_skyc1')
    ]

    # Get all the indexes required for each original
    # `source_skyc1` value
    source_df_index_to_copy = pd.DataFrame(
        duplicated_skyc1.groupby(
            'source_skyc1'
        ).apply(
            lambda grp: sources_df[
                sources_df['source'] == grp.name
            ].index.values.tolist()
        )
    )

    # source_df_index_to_copy
    # +----------------+-------+
    # |   source_skyc1 | 0     |
    # |----------------+-------|
    # |            122 | [121] |
    # |            254 | [253] |
    # |            262 | [261] |
    # |            405 | [404] |
    # |            656 | [655] |
    # +----------------+-------+

    # merge these so it's easy to explode and copy the index values.
    duplicated_skyc1 = (
        duplicated_skyc1.loc[:,['source_skyc1', 'new_source_id']]
        .merge(
            source_df_index_to_copy,
            left_on='source_skyc1',
            right_index=True,
            how='left'
        )
        .rename(columns={0: 'source_index'})
        .explode('source_index')
    )

    # duplicated_skyc1
    # +-----+----------------+-----------------+----------------+
    # |     |   source_skyc1 |   new_source_id |   source_index |
    # |-----+----------------+-----------------+----------------|
    # | 118 |            122 |            5542 |            121 |
    # | 239 |            254 |            5543 |            253 |
    # | 247 |            262 |            5544 |            261 |
    # | 380 |            405 |            5545 |            404 |
    # | 615 |            656 |            5546 |            655 |
    # +-----+----------------+-----------------+----------------+

    # Get the sources
    sources_to_copy = sources_df.loc[
        duplicated_skyc1['source_index'].values
    ]

    # Apply the new_source_id
    sources_to_copy['source'] = duplicated_skyc1['new_source_id'].values

    # Reset the related column to avoid rogue relations
    sources_to_copy['related'] = None

    # and finally append.
    sources_df = sources_df.append(
        sources_to_copy,
        ignore_index=True
    )

    return temp_srcs, sources_df

one_to_many_basic(skyc2_srcs, sources_df, id_incr_par_assoc=0)

Finds and processes the one-to-many associations in the basic association. For each one-to-many association, the nearest associated source is assigned the original source id, where as the others are given new ids. The original source in skyc1 then is copied to the sources_df to provide the extra association for that source, i.e. it is forked.

This is needed to be separate from the advanced version as the data products between the two are different.

Parameters:

Name Type Description Default
skyc2_srcs pd.DataFrame

The sky catalogue 2 sources (i.e. the sources being associated to the base) used during basic association.

required
sources_df pd.DataFrame

The sources_df produced by each step of association holding the current 'sources'.

required
id_incr_par_assoc int

An increment value to add to new source ids when creating them. Mainly useful for add mode with parallel association

0

Returns:

Type Description
pd.DataFrame

Tuple containging the updated 'skyc2_srcs' and 'sources_df' with

pd.DataFrame

all one_to_many relation information added.

Source code in vast_pipeline/pipeline/association.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def one_to_many_basic(
    skyc2_srcs: pd.DataFrame, sources_df: pd.DataFrame,
    id_incr_par_assoc: int=0
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    Finds and processes the one-to-many associations in the basic
    association. For each one-to-many association, the nearest
    associated source is assigned the original source id, where as
    the others are given new ids. The original source in skyc1 then
    is copied to the sources_df to provide the extra association for
    that source, i.e. it is forked.

    This is needed to be separate from the advanced version
    as the data products between the two are different.

    Args:
        skyc2_srcs: The sky catalogue 2 sources (i.e. the sources being
            associated to the base) used during basic association.
        sources_df: The sources_df produced by each step of
            association holding the current 'sources'.
        id_incr_par_assoc: An increment value to add to new source ids
            when creating them. Mainly useful for add mode with parallel
            association

    Returns:
        Tuple containging the updated 'skyc2_srcs' and 'sources_df' with
        all one_to_many relation information added.
    """
    # select duplicated in 'source' field in skyc2_srcs, excluding -1
    duplicated_skyc2 = skyc2_srcs.loc[
        (skyc2_srcs['source'] != -1) &
        skyc2_srcs['source'].duplicated(keep=False),
        ['source', 'related', 'd2d']
    ]

    # duplicated_skyc2
    # +-----+----------+-----------+---------+
    # |     |   source | related   |     d2d |
    # |-----+----------+-----------+---------|
    # | 264 |      254 |           | 2.04422 |
    # | 265 |      254 |           | 6.16881 |
    # | 327 |      262 |           | 3.20439 |
    # | 328 |      262 |           | 3.84425 |
    # | 526 |      122 |           | 3.07478 |
    # +-----+----------+-----------+---------+

    if duplicated_skyc2.empty:
        logger.debug('No one-to-many associations.')
        return skyc2_srcs, sources_df

    logger.info(
        'Detected #%i double matches, cleaning...',
        duplicated_skyc2.shape[0]
    )

    # now we have the src values which are doubled.
    # make the nearest match have the "original" src id
    # give the other matched source a new src id
    # and make sure to copy the other previously
    # matched sources.
    # Get the duplicated, sort by the distance column
    duplicated_skyc2 = duplicated_skyc2.sort_values(by=['source', 'd2d'])

    # Get those that need to be given a new ID number (i.e. not the min dist_col)
    idx_to_change = duplicated_skyc2.index.values[
        duplicated_skyc2.duplicated('source')
    ]

    # Create a new `new_source_id` column to store the 'correct' IDs
    duplicated_skyc2['new_source_id'] = duplicated_skyc2['source']

    # Define the range of new source ids
    start_new_src_id = sources_df['source'].values.max() + 1 + id_incr_par_assoc

    new_source_ids = np.arange(
        start_new_src_id,
        start_new_src_id + idx_to_change.shape[0],
        dtype=int
    )

    # Assign the new IDs
    duplicated_skyc2.loc[idx_to_change, 'new_source_id'] = new_source_ids

    # duplicated_skyc2
    # +-----+----------+-----------+---------+-----------------+
    # |     |   source | related   |     d2d |   new_source_id |
    # |-----+----------+-----------+---------+-----------------|
    # | 526 |      122 |           | 3.07478 |             122 |
    # | 528 |      122 |           | 6.41973 |            5542 |
    # | 264 |      254 |           | 2.04422 |             254 |
    # | 265 |      254 |           | 6.16881 |            5543 |
    # | 327 |      262 |           | 3.20439 |             262 |
    # +-----+----------+-----------+---------+-----------------+

    # Now we need to sort out the related, essentially here the 'original'
    # and 'non original' need to be treated differently.
    # The original source need all the assoicated new ids appended to the
    # related column.
    # The not_original ones need just the original ID appended.
    # copy() is used here to avoid chained indexing (set with copy warnings)
    not_original = duplicated_skyc2.loc[
        idx_to_change
    ].copy()

    original = duplicated_skyc2.drop_duplicates(
        'source'
    ).copy()

    new_original_related = pd.DataFrame(
        not_original[
            ['source', 'new_source_id']
        ].groupby('source').apply(
            lambda grp: grp['new_source_id'].tolist()
        )
    )

    # new_original_related
    # +----------+--------+
    # |   source | 0      |
    # |----------+--------|
    # |      122 | [5542] |
    # |      254 | [5543] |
    # |      262 | [5544] |
    # |      405 | [5545] |
    # |      656 | [5546] |
    # +----------+--------+

    # Append the relations in each case, using the above 'new_original_related'
    # for the original ones.
    # The not original only require the appending of the original index.
    original['related'] = (
        original[['related', 'source']]
        .apply(
            add_new_one_to_many_relations,
            args=(False, new_original_related),
            axis=1
        )
    )

    not_original['related'] = not_original.apply(
        add_new_one_to_many_relations,
        args=(False,),
        axis=1
    )

    duplicated_skyc2 = original.append(not_original)

    # duplicated_skyc2
    # +-----+----------+-----------+---------+-----------------+
    # |     |   source | related   |     d2d |   new_source_id |
    # |-----+----------+-----------+---------+-----------------|
    # | 526 |      122 | [5542]    | 3.07478 |             122 |
    # | 264 |      254 | [5543]    | 2.04422 |             254 |
    # | 327 |      262 | [5544]    | 3.20439 |             262 |
    # | 848 |      405 | [5545]    | 5.52865 |             405 |
    # | 695 |      656 | [5546]    | 4.69094 |             656 |
    # +-----+----------+-----------+---------+-----------------+

    del original, not_original

    # Apply the updates to the actual temp_srcs.
    skyc2_srcs.loc[idx_to_change, 'source'] = new_source_ids
    skyc2_srcs.loc[
        duplicated_skyc2.index.values,
        'related'
    ] = duplicated_skyc2.loc[
        duplicated_skyc2.index.values,
        'related'
    ].values

    # Finally we need to copy copies of the previous sources in the
    # sources_df to complete the new sources.

    # To do this we get only the non-original sources
    duplicated_skyc2 = duplicated_skyc2.loc[
        duplicated_skyc2.duplicated('source')
    ]

    # Get all the indexes required for each original
    # `source_skyc1` value
    source_df_index_to_copy = pd.DataFrame(
        duplicated_skyc2.groupby(
            'source'
        ).apply(
            lambda grp: sources_df[
                sources_df['source'] == grp.name
            ].index.values.tolist()
        )
    )

    # source_df_index_to_copy
    # +----------+-------+
    # |   source | 0     |
    # |----------+-------|
    # |      122 | [121] |
    # |      254 | [253] |
    # |      262 | [261] |
    # |      405 | [404] |
    # |      656 | [655] |
    # +----------+-------+

    # merge these so it's easy to explode and copy the index values.
    duplicated_skyc2 = (
        duplicated_skyc2[['source', 'new_source_id']]
        .merge(
            source_df_index_to_copy,
            left_on='source',
            right_index=True,
            how='left'
        )
        .rename(columns={0: 'source_index'})
        .explode('source_index')
    )

    # Get the sources - all columns from the sources_df table
    sources_to_copy = sources_df.loc[
        duplicated_skyc2['source_index'].values
    ]

    # Apply the new_source_id
    sources_to_copy['source'] = duplicated_skyc2['new_source_id'].values

    # Reset the related column to avoid rogue relations
    sources_to_copy['related'] = None

    # and finally append.
    sources_df = sources_df.append(
        sources_to_copy,
        ignore_index=True
    )

    return skyc2_srcs, sources_df

parallel_association(images_df, limit, dr_limit, bw_limit, duplicate_limit, config, n_skyregion_groups, add_mode, previous_parquets, done_images_df, done_source_ids)

Launches association on different sky region groups in parallel using Dask.

Parameters:

Name Type Description Default
images_df pd.DataFrame

Holds the images that are being processed. Also contains what sky region group the image belongs to.

required
limit Angle

The association radius limit.

required
dr_limit float

The de Ruiter radius limit.

required
bw_limit float

The beamwidth limit.

required
duplicate_limit Angle

The duplicate radius detection limit.

required
config module

The pipeline config settings.

required
n_skyregion_groups int

The number of sky region groups.

required

Returns:

Type Description
pd.DataFrame

pd.DataFrame: The combined association results of the parallel association with corrected source ids.

Source code in vast_pipeline/pipeline/association.py
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
def parallel_association(
    images_df: pd.DataFrame,
    limit: Angle,
    dr_limit: float,
    bw_limit: float,
    duplicate_limit: Angle,
    config: PipelineConfig,
    n_skyregion_groups: int,
    add_mode: bool,
    previous_parquets: Dict[str, str],
    done_images_df: pd.DataFrame,
    done_source_ids: List[int]
) -> pd.DataFrame:
    """
    Launches association on different sky region groups in parallel using Dask.

    Args:
        images_df: Holds the images that are being processed.
            Also contains what sky region group the image belongs to.
        limit: The association radius limit.
        dr_limit: The de Ruiter radius limit.
        bw_limit: The beamwidth limit.
        duplicate_limit: The duplicate radius detection limit.
        config (module): The pipeline config settings.
        n_skyregion_groups: The number of sky region groups.

    Returns:
        pd.DataFrame: The combined association results of the parallel
            association with corrected source ids.
    """
    logger.info(
        "Running parallel association for %i sky region groups.",
        n_skyregion_groups
    )

    timer = StopWatch()

    meta = {
        'id': 'i',
        'uncertainty_ew': 'f',
        'weight_ew': 'f',
        'uncertainty_ns': 'f',
        'weight_ns': 'f',
        'flux_int': 'f',
        'flux_int_err': 'f',
        'flux_int_isl_ratio': 'f',
        'flux_peak': 'f',
        'flux_peak_err': 'f',
        'flux_peak_isl_ratio': 'f',
        'forced': '?',
        'compactness': 'f',
        'has_siblings': '?',
        'snr': 'f',
        'image': 'U',
        'datetime': 'datetime64[ns]',
        'source': 'i',
        'ra': 'f',
        'dec': 'f',
        'd2d': 'f',
        'dr': 'f',
        'related': 'O',
        'epoch': 'i',
        'interim_ew': 'f',
        'interim_ns': 'f',
    }

    # Add an increment to any new source values when using add_mode to avoid
    # getting duplicates in the result laater
    id_incr_par_assoc = max(done_source_ids) if add_mode else 0

    n_cpu = cpu_count() - 1

    # pass each skyreg_group through the normal association process.
    results = (
        dd.from_pandas(images_df, n_cpu)
        .groupby('skyreg_group')
        .apply(
            association,
            limit=limit,
            dr_limit=dr_limit,
            bw_limit=bw_limit,
            duplicate_limit=duplicate_limit,
            config=config,
            add_mode=add_mode,
            previous_parquets=previous_parquets,
            done_images_df=done_images_df,
            id_incr_par_assoc=id_incr_par_assoc,
            parallel=True,
            meta=meta
        ).compute(n_workers=n_cpu, scheduler='processes')
    )

    # results are the normal dataframe of results with the columns:
    # 'id', 'uncertainty_ew', 'weight_ew', 'uncertainty_ns', 'weight_ns',
    # 'flux_int', 'flux_int_err', 'flux_peak', 'flux_peak_err', 'forced',
    # 'compactness', 'has_siblings', 'snr', 'image', 'datetime', 'source',
    # 'ra', 'dec', 'd2d', 'dr', 'related', 'epoch', 'interim_ew' and
    # 'interim_ns'.

    # The index however is now a multi index with the skyregion group and
    # a general result index. Hence the general result index is repeated for
    # each skyreg_group along with the source_ids. This needs to be collapsed
    # and the source id's corrected.

    # Index example:
    #                        id
    # skyreg_group
    # --------------------------
    # 2            0      15640
    #              1      15641
    #              2      15642
    #              3      15643
    #              4      15644
    # ...                   ...
    # 1            46975  53992
    #              46976  54062
    #              46977  54150
    #              46978  54161
    #              46979  54164

    # Get the indexes (skyreg_groups) to loop over for source id correction
    indexes = results.index.levels[0].values

    if add_mode:
        # Need to correct all skyreg_groups.
        # First get the starting id for new sources.
        new_id = max(done_source_ids) + 1
        for i in indexes:
            corr_df, new_id = _correct_parallel_source_ids_add_mode(
                results.loc[i, ['source', 'related']],
                done_source_ids,
                new_id
            )
            results.loc[
                (i, slice(None)), ['source', 'related']
            ] = corr_df.values
    else:
        # The first index acts as the base, so the others are looped over and
        # corrected.
        for i, val in enumerate(indexes):
            # skip first one, makes the enumerate easier to deal with
            if i == 0:
                continue
            # Get the maximum source ID from the previous group.
            max_id = results.loc[indexes[i - 1]].source.max()
            # Run through the correction function, only the 'source' and
            # 'related'
            # columns are passed and returned (corrected).
            corr_df = _correct_parallel_source_ids(
                results.loc[val, ['source', 'related']],
                max_id
            )
            # replace the values in the results with the corrected source and
            # related values
            results.loc[
                (val, slice(None)), ['source', 'related']
            ] = corr_df.values

            del corr_df

    # reset the indeex of the final corrected and collapsed result
    results = results.reset_index(drop=True)

    logger.info(
        'Total parallel association time: %.2f seconds', timer.reset_init()
    )

    return results

Last update: March 2, 2022
Created: March 2, 2022