Skip to content

finalise.py

calculate_measurement_pair_aggregate_metrics(measurement_pairs_df, min_vs, flux_type='peak')

Calculate the aggregate maximum measurement pair variability metrics to be stored in Source objects. Only measurement pairs with abs(Vs metric) >= min_vs are considered. The measurement pairs are filtered on abs(Vs metric) >= min_vs, grouped by the source ID column source, then the row index of the maximum abs(m) metric is found. The absolute Vs and m metric values from this row are returned for each source.

Parameters:

Name Type Description Default
measurement_pairs_df DataFrame

The measurement pairs and their variability metrics. Must at least contain the columns: source, vs_{flux_type}, m_{flux_type}.

required
min_vs float

The minimum value of the Vs metric (i.e. column vs_{flux_type}) the measurement pair must have to be included in the aggregate metric determination.

required
flux_type str

The flux type on which to perform the aggregation, either "peak" or "int". Default is "peak".

'peak'

Returns:

Type Description
DataFrame

Measurement pair aggregate metrics indexed by the source ID, source. The metric columns are named: vs_abs_significant_max_{flux_type} and m_abs_significant_max_{flux_type}.

Source code in vast_pipeline/pipeline/finalise.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def calculate_measurement_pair_aggregate_metrics(
    measurement_pairs_df: pd.DataFrame,
    min_vs: float,
    flux_type: str = "peak",
) -> pd.DataFrame:
    """
    Calculate the aggregate maximum measurement pair variability metrics
    to be stored in `Source` objects. Only measurement pairs with
    abs(Vs metric) >= `min_vs` are considered.
    The measurement pairs are filtered on abs(Vs metric) >= `min_vs`,
    grouped by the source ID column `source`, then the row index of the
    maximum abs(m) metric is found. The absolute Vs and m metric values from
    this row are returned for each source.

    Args:
        measurement_pairs_df:
            The measurement pairs and their variability metrics. Must at least
            contain the columns: source, vs_{flux_type}, m_{flux_type}.
        min_vs:
            The minimum value of the Vs metric (i.e. column `vs_{flux_type}`)
            the measurement pair must have to be included in the aggregate
            metric determination.
        flux_type:
            The flux type on which to perform the aggregation, either "peak"
            or "int". Default is "peak".

    Returns:
        Measurement pair aggregate metrics indexed by the source ID, `source`.
            The metric columns are named: `vs_abs_significant_max_{flux_type}`
            and `m_abs_significant_max_{flux_type}`.
    """
    check_df = measurement_pairs_df.query(f"abs(vs_{flux_type}) >= @min_vs")

    # This check is performed due to a bug that was occuring after updating the
    # pandas dependancy (1.4) when performing the tests. The bug was that the
    # grouby and agg stage below was being performed on an empty series in the
    # basic association test and causing a failure. Hence this only performs
    # the groupby if the original query dataframe is not empty.
    if check_df.empty:
        pair_agg_metrics = pd.DataFrame(
            columns=[f"vs_{flux_type}", f"m_{flux_type}", "source"]
        )
    else:
        pair_agg_metrics = measurement_pairs_df.iloc[
            check_df
            .groupby("source")
            .agg(m_abs_max_idx=(f"m_{flux_type}", lambda x: x.abs().idxmax()),)
            # cast row indices to int and select them
            .astype(np.int32)["m_abs_max_idx"]
            .reset_index(drop=True)  # keep only the row indices
        ][[f"vs_{flux_type}", f"m_{flux_type}", "source"]]

    pair_agg_metrics = pair_agg_metrics.abs().rename(columns={
        f"vs_{flux_type}": f"vs_abs_significant_max_{flux_type}",
        f"m_{flux_type}": f"m_abs_significant_max_{flux_type}",
    }).set_index('source')
    return pair_agg_metrics

final_operations(sources_df, p_run, new_sources_df, calculate_pairs, source_aggregate_pair_metrics_min_abs_vs, add_mode, done_source_ids, previous_parquets, n_cpu=0, max_partition_mb=15)

Performs the final operations of the pipeline: - Calculates the statistics for the final sources. - Uploads sources and writes parquet. - Uploads related sources and writes parquet. - Uploads associations and writes parquet.

Parameters:

Name Type Description Default
sources_df DataFrame

The main sources_df dataframe produced from the pipeline. Contains all measurements and the association information. The id column is the Measurement object primary key that has already been saved to the database.

required
p_run Run

The pipeline Run object of which the sources are associated with.

required
new_sources_df DataFrame

The new sources dataframe, only contains the 'new_source_high_sigma' column (source_id is the index).

required
calculate_pairs bool

Whether to calculate the measurement pairs and their 2-epoch metrics, Vs and m.

required
source_aggregate_pair_metrics_min_abs_vs float

Only measurement pairs where the Vs metric exceeds this value are selected for the aggregate pair metrics that are stored in Source objects.

required
add_mode bool

Whether the pipeline is running in add mode.

required
done_source_ids List[int]

A list containing the source ids that have already been uploaded in the previous run in add mode.

required

Returns:

Type Description
int

The number of sources contained in the pipeline run (used in the next steps of main.py).

int

The number of new sources contained in the pipeline run (used in the next steps of main.py).

Source code in vast_pipeline/pipeline/finalise.py
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def final_operations(
    sources_df: pd.DataFrame,
    p_run: Run,
    new_sources_df: pd.DataFrame,
    calculate_pairs: bool,
    source_aggregate_pair_metrics_min_abs_vs: float,
    add_mode: bool,
    done_source_ids: List[int],
    previous_parquets: Dict[str, str],
    n_cpu: int = 0,
    max_partition_mb: int = 15
) -> Tuple[int, int]:
    """
    Performs the final operations of the pipeline:
    - Calculates the statistics for the final sources.
    - Uploads sources and writes parquet.
    - Uploads related sources and writes parquet.
    - Uploads associations and writes parquet.

    Args:
        sources_df:
            The main sources_df dataframe produced from the pipeline.
            Contains all measurements and the association information.
            The `id` column is the Measurement object primary key that has
            already been saved to the database.
        p_run:
            The pipeline Run object of which the sources are associated with.
        new_sources_df:
            The new sources dataframe, only contains the
            'new_source_high_sigma' column (source_id is the index).
        calculate_pairs:
            Whether to calculate the measurement pairs and their 2-epoch
            metrics, Vs and m.
        source_aggregate_pair_metrics_min_abs_vs:
            Only measurement pairs where the Vs metric exceeds this value
            are selected for the aggregate pair metrics that are stored in
            `Source` objects.
        add_mode:
            Whether the pipeline is running in add mode.
        done_source_ids:
            A list containing the source ids that have already been uploaded
            in the previous run in add mode.

    Returns:
        The number of sources contained in the pipeline run (used in the next
            steps of main.py).
        The number of new sources contained in the pipeline run (used in the
            next steps of main.py).
    """
    timer = StopWatch()

    # calculate source fields
    logger.info(
        'Calculating statistics for %i sources...',
        sources_df.source.unique().shape[0]
    )
    log_total_memory_usage()

    srcs_df = parallel_groupby(sources_df,
                               n_cpu=n_cpu,
                               max_partition_mb=max_partition_mb)

    mem_usage = get_df_memory_usage(srcs_df)
    logger.info('Groupby-apply time: %.2f seconds', timer.reset())
    logger.debug(f"Initial srcs_df memory: {mem_usage}MB")
    log_total_memory_usage()

    # add new sources
    srcs_df["new"] = srcs_df.index.isin(new_sources_df.index)
    srcs_df = pd.merge(
        srcs_df,
        new_sources_df["new_high_sigma"],
        left_on="source",
        right_index=True,
        how="left",
    )
    srcs_df["new_high_sigma"] = srcs_df["new_high_sigma"].fillna(0.0)

    mem_usage = get_df_memory_usage(srcs_df)
    logger.debug(f"srcs_df memory after adding new sources: {mem_usage}MB")
    log_total_memory_usage()

    # calculate nearest neighbour
    srcs_skycoord = SkyCoord(
        srcs_df['wavg_ra'].values,
        srcs_df['wavg_dec'].values,
        unit=(u.deg, u.deg)
    )
    idx, d2d, _ = srcs_skycoord.match_to_catalog_sky(
        srcs_skycoord,
        nthneighbor=2
    )

    # add the separation distance in degrees
    srcs_df['n_neighbour_dist'] = d2d.deg

    mem_usage = get_df_memory_usage(srcs_df)
    logger.debug(f"srcs_df memory after nearest-neighbour: {mem_usage}MB")
    log_total_memory_usage()

    # create measurement pairs, aka 2-epoch metrics
    if calculate_pairs:
        timer.reset()
        measurement_pairs_df = calculate_measurement_pair_metrics(
            sources_df,
            n_cpu=n_cpu,
            max_partition_mb=max_partition_mb)
        logger.info(
            'Measurement pair metrics time: %.2f seconds',
            timer.reset())
        mem_usage = get_df_memory_usage(measurement_pairs_df)
        logger.debug(f"measurment_pairs_df memory: {mem_usage}MB")
        log_total_memory_usage()

        # calculate measurement pair metric aggregates for sources by finding
        # the row indices of the aggregate max of the abs(m) metric for each
        # flux type.
        pair_agg_metrics = pd.merge(
            calculate_measurement_pair_aggregate_metrics(
                measurement_pairs_df,
                source_aggregate_pair_metrics_min_abs_vs,
                flux_type="peak",
            ),
            calculate_measurement_pair_aggregate_metrics(
                measurement_pairs_df,
                source_aggregate_pair_metrics_min_abs_vs,
                flux_type="int",
            ),
            how="outer",
            left_index=True,
            right_index=True,
        )

        # join with sources and replace agg metrics NaNs with 0 as the
        # DataTables API JSON serialization doesn't like them
        srcs_df = srcs_df.join(pair_agg_metrics).fillna(value={
            "vs_abs_significant_max_peak": 0.0,
            "m_abs_significant_max_peak": 0.0,
            "vs_abs_significant_max_int": 0.0,
            "m_abs_significant_max_int": 0.0,
        })
        logger.info(
            "Measurement pair aggregate metrics time: %.2f seconds",
            timer.reset())
        mem_usage = get_df_memory_usage(srcs_df)
        logger.debug(f"srcs_df memory after calculate_pairs: {mem_usage}MB")
        log_total_memory_usage()
    else:
        logger.info(
            "Skipping measurement pair metric calculation as specified in "
            "the run configuration."
        )

    # upload sources to DB, column 'id' with DB id is contained in return
    if add_mode:
        # if add mode is being used some sources need to updated where as some
        # need to be newly uploaded.
        # upload new ones first (new id's are fetched)
        src_done_mask = srcs_df.index.isin(done_source_ids)
        srcs_df_upload = srcs_df.loc[~src_done_mask].copy()

        mem_usage = get_df_memory_usage(srcs_df_upload)
        logger.debug(f"srcs_df_upload initial memory: {mem_usage}MB")
        log_total_memory_usage()

        srcs_df_upload = make_upload_sources(srcs_df_upload, p_run, add_mode)

        mem_usage = get_df_memory_usage(srcs_df_upload)
        logger.debug(f"srcs_df_upload memory after upload: {mem_usage}MB")
        log_total_memory_usage()

        # And now update
        srcs_df_update = srcs_df.loc[src_done_mask].copy()
        logger.info(
            f"Updating {srcs_df_update.shape[0]} sources with new metrics.")
        mem_usage = get_df_memory_usage(srcs_df_update)
        logger.debug(f"srcs_df_update memory: {mem_usage}MB")
        log_total_memory_usage()

        srcs_df = update_sources(srcs_df_update, batch_size=1000)
        mem_usage = get_df_memory_usage(srcs_df_update)
        logger.debug(f"srcs_df_update memory: {mem_usage}MB")
        log_total_memory_usage()
        # Add back together
        if not srcs_df_upload.empty:
            srcs_df = pd.concat([srcs_df, srcs_df_upload])
    else:
        srcs_df = make_upload_sources(srcs_df, p_run, add_mode)

    mem_usage = get_df_memory_usage(srcs_df)
    logger.debug(f"srcs_df memory after uploading sources: {mem_usage}MB")
    log_total_memory_usage()

    # gather the related df, upload to db and save to parquet file
    # the df will look like
    #
    #         from_source_id  to_source_id
    # source
    # 714     60              14396
    # 1211    94              12961
    #
    # the index ('source') has the initial id generated by the pipeline to
    # identify unique sources, the 'from_source_id' column has the django
    # model id (in db), the 'to_source_id' has the pipeline index

    related_df = (
        srcs_df.loc[srcs_df["related_list"] != -1, ["id", "related_list"]]
        .explode("related_list")
        .rename(columns={"id": "from_source_id",
                         "related_list": "to_source_id"
                         })
    )

    # for the column 'from_source_id', replace relation source ids with db id
    related_df["to_source_id"] = related_df["to_source_id"].map(
        srcs_df["id"].to_dict())
    # drop relationships with the same source
    related_df = related_df[related_df["from_source_id"]
                            != related_df["to_source_id"]]

    # write symmetrical relations to parquet
    related_df.to_parquet(
        os.path.join(p_run.path, 'relations.parquet'),
        index=False
    )

    # upload the relations to DB
    # check for add_mode first
    if add_mode:
        # Load old relations so the already uploaded ones can be removed
        old_relations = (
            pd.read_parquet(previous_parquets['relations'])
        )

        related_df = (
            pd.concat([related_df, old_relations], ignore_index=True)
            .drop_duplicates(keep=False)
        )
        logger.debug(f'Add mode: #{related_df.shape[0]} relations to upload.')

    make_upload_related_sources(related_df)

    del related_df

    # write sources to parquet file
    srcs_df = srcs_df.drop(["related_list", "img_list"], axis=1)
    (
        # set the index to db ids, dropping the source idx
        srcs_df.set_index('id')
        .to_parquet(os.path.join(p_run.path, 'sources.parquet'))
    )

    # update measurements with sources to get associations
    sources_df = (
        sources_df.drop('related', axis=1)
        .merge(srcs_df.rename(columns={'id': 'source_id'}), on='source')
    )

    mem_usage = get_df_memory_usage(sources_df)
    logger.debug(f"sources_df memory after srcs_df merge: {mem_usage}MB")
    log_total_memory_usage()

    if add_mode:
        # Load old associations so the already uploaded ones can be removed
        old_assoications = (
            pd.read_parquet(previous_parquets['associations'])
            .rename(columns={'meas_id': 'id'})
        )
        sources_df_upload = pd.concat(
            [sources_df, old_assoications],
            ignore_index=True
        )
        sources_df_upload = sources_df_upload.drop_duplicates(
            ['source_id', 'id', 'd2d', 'dr'], keep=False
        )
        logger.debug(
            f'Add mode: #{sources_df_upload.shape[0]} associations to upload.')
    else:
        sources_df_upload = sources_df

    # upload associations into DB
    make_upload_associations(sources_df_upload)

    # write associations to parquet file
    sources_df[['source_id', 'id', 'd2d', 'dr']]. \
        rename(columns={'id': 'meas_id'}). \
            to_parquet(os.path.join(p_run.path, 'associations.parquet'))

    if calculate_pairs:
        # get the Source object primary keys for the measurement pairs
        measurement_pairs_df = measurement_pairs_df.join(
            srcs_df.id.rename("source_id"), on="source"
        )

        # optimize measurement pair DataFrame and save to parquet file
        measurement_pairs_df = optimize_ints(
            optimize_floats(
                measurement_pairs_df.drop(columns=["source"]).rename(
                    columns={"id_a": "meas_id_a", "id_b": "meas_id_b"}
                )
            )
        )
        measurement_pairs_df.to_parquet(
            os.path.join(p_run.path, "measurement_pairs.parquet"), index=False
        )

    logger.info(
        "Total final operations time: %.2f seconds",
        timer.reset_init())

    nr_sources = srcs_df["id"].count()
    nr_new_sources = srcs_df['new'].sum()

    # calculate and return total number of extracted sources
    return (nr_sources, nr_new_sources)