36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586 | class PipelineConfig:
"""Pipeline run configuration.
Attributes:
SCHEMA: class attribute containing the YAML schema for the run config.
TEMPLATE_PATH: class attribute containing the path to the default Jinja2 run
config template file.
epoch_based: boolean indicating if the original run config inputs were provided
with user-defined epochs.
Raises:
PipelineConfigError: the input YAML config violates the schema.
"""
# key: config input type, value: boolean indicating if it is required
_REQUIRED_INPUT_TYPES: Dict[str, bool] = {
"image": True,
"selavy": True,
"noise": True,
"background": False,
}
# Inputs may be optional. All inputs will be either a unique list or a mapping (epoch
# mode and/or glob expressions). These possibilities cannot be validated at once, so
# it will accept Any and then revalidate later.
_SCHEMA_INPUTS = {
(k if v else yaml.Optional(k)): yaml.MapPattern(yaml.Str(), yaml.Any())
| yaml.UniqueSeq(yaml.Str())
for k, v in _REQUIRED_INPUT_TYPES.items()
}
_SCHEMA_GLOB_INPUTS = {"glob": yaml.Str() | yaml.Seq(yaml.Str())}
_VALID_ASSOC_METHODS: List[str] = ["basic", "advanced", "deruiter"]
SCHEMA = yaml.Map(
{
"run": yaml.Map(
{
"path": yaml.Str(),
"suppress_astropy_warnings": yaml.Bool(),
}
),
"inputs": yaml.Map(_SCHEMA_INPUTS),
"source_monitoring": yaml.Map(
{
"monitor": yaml.Bool(),
"min_sigma": yaml.Float(),
"edge_buffer_scale": yaml.Float(),
"cluster_threshold": yaml.Float(),
"allow_nan": yaml.Bool(),
}
),
"source_association": yaml.Map(
{
"method": yaml.Enum(_VALID_ASSOC_METHODS),
"radius": yaml.Float(),
"deruiter_radius": yaml.Float(),
"deruiter_beamwidth_limit": yaml.Float(),
"parallel": yaml.Bool(),
"epoch_duplicate_radius": yaml.Float(),
}
),
"new_sources": yaml.Map(
{
"min_sigma": yaml.Float(),
}
),
"measurements": yaml.Map(
{
"source_finder": yaml.Enum(["selavy"]),
"flux_fractional_error": yaml.Float(),
"condon_errors": yaml.Bool(),
"selavy_local_rms_fill_value": yaml.Float(),
"write_arrow_files": yaml.Bool(),
"ra_uncertainty": yaml.Float(),
"dec_uncertainty": yaml.Float(),
}
),
"variability": yaml.Map(
{
"pair_metrics": yaml.Bool(),
"source_aggregate_pair_metrics_min_abs_vs": yaml.Float(),
}
),
yaml.Optional("processing"): yaml.Map(
{
yaml.Optional(
"num_workers",
default=settings.PIPE_RUN_CONFIG_DEFAULTS['num_workers']):
yaml.NullNone() | yaml.Int() | yaml.Str(),
yaml.Optional(
"num_workers_io",
default=settings.PIPE_RUN_CONFIG_DEFAULTS['num_workers_io']):
yaml.NullNone() | yaml.Int() | yaml.Str(),
yaml.Optional(
"max_partition_mb",
default=settings.PIPE_RUN_CONFIG_DEFAULTS['max_partition_mb']):
yaml.Int()
}
)
}
)
# path to default run config template
TEMPLATE_PATH: str = os.path.join(
settings.BASE_DIR, "vast_pipeline", "config_template.yaml.j2"
)
def __init__(self, config_yaml: yaml.YAML, validate_inputs: bool = True):
"""Initialises PipelineConfig with parsed (but not necessarily validated) YAML.
Args:
config_yaml (yaml.YAML): Input YAML, usually the output of `strictyaml.load`.
validate_inputs (bool, optional): Validate the config input files. Ensures
that the inputs match (e.g. each image has a catalogue), and that each
path exists. Set to False to skip these checks. Defaults to True.
Raises:
PipelineConfigError: The input YAML config violates the schema.
"""
self._yaml: yaml.YAML = config_yaml
# The epoch_based parameter below is for if the user has entered just lists we
# don't have access to the dates until the Image instances are created. So we
# flag this as true so that we can reorder the epochs once the date information
# is available. It is also recorded in the database such that there is a record
# of the fact that the run was processed in an epoch based mode.
self.epoch_based: bool
# Determine if epoch-based association should be used based on input files.
# If inputs have been parsed to dicts, then the user has defined their own epochs.
# If inputs have been parsed to lists, we must convert to dicts and auto-fill
# the epochs.
# ensure the inputs are valid in case .from_file(..., validate=False) was used
if not validate_inputs:
return
try:
self._validate_inputs()
except yaml.YAMLValidationError as e:
raise PipelineConfigError(e)
# detect simple list inputs and convert them to epoch-mode inputs
yaml_inputs = self._yaml["inputs"]
inputs = yaml_inputs.data
for input_file_type in self._REQUIRED_INPUT_TYPES:
# skip missing optional input types, e.g. background
if (
not self._REQUIRED_INPUT_TYPES[input_file_type]
and input_file_type not in self["inputs"]
):
continue
input_files = inputs[input_file_type]
# resolve glob expressions if present
if isinstance(input_files, dict):
# must be either a glob expression, list of glob expressions, or epoch-mode
if "glob" in input_files:
# resolve the glob expressions
self.epoch_based = False
file_list = self._resolve_glob_expressions(
yaml_inputs[input_file_type]
)
inputs[input_file_type] = self._create_input_epochs(file_list)
else:
# epoch-mode with either a list of files or glob expressions
self.epoch_based = True
for epoch in input_files:
if "glob" in input_files[epoch]:
# resolve the glob expressions
file_list = self._resolve_glob_expressions(
yaml_inputs[input_file_type][epoch]
)
inputs[input_file_type][epoch] = file_list
else:
# Epoch-based association not requested and no globs present. Replace
# input lists with dicts where each input file has it's own epoch.
self.epoch_based = False
inputs[input_file_type] = self._create_input_epochs(
input_files
)
self._yaml["inputs"] = inputs
def __getitem__(self, name: str):
"""Retrieves the requested YAML chunk as a native Python object."""
return self._yaml[name].data
@staticmethod
def _create_input_epochs(input_files: List[str]) -> Dict[str, List[str]]:
"""Convert a list of input files into a dict where each list element is placed
into its own list of length 1 and mapped to by a unique key, a string that is a
0-padded integer. For example, ["A", "B", "C", ..., "Z"] would be converted to
{
"01": ["A"],
"02": ["B"],
"03": ["C"],
...
"26": ["Z"],
}
The keys are 0-padded to ensure the strings are sortable regardless of the
length of `input_files`.
This conversion is required for run configs that are not defined in "epoch mode"
as after config validation, the pipeline assumes that there will be defined
epochs.
Args:
input_files: the list of input file paths.
Returns:
The input file paths mapped to by unique epoch keys.
"""
pad_width = len(str(len(input_files)))
input_files_dict = {
f"{i + 1:0{pad_width}}": [val] for i, val in enumerate(input_files)
}
return input_files_dict
@classmethod
def from_file(
cls,
yaml_path: str,
label: str = "run config",
validate: bool = True,
validate_inputs: bool = True,
add_defaults: bool = True,
) -> "PipelineConfig":
"""Create a PipelineConfig object from a run configuration YAML file.
Args:
yaml_path: Path to the run config YAML file.
label: A label for the config object that will be used in error messages.
Default is "run config".
validate: Perform config schema validation immediately after loading
the config file. If set to False, the full schema validation
will not be performed until PipelineConfig.validate() is
explicitly called. The inputs are always validated regardless.
Defaults to True.
validate_inputs: Validate the config input files. Ensures that the inputs
match (e.g. each image has a catalogue), and that each path exists. Set
to False to skip these checks. Defaults to True.
add_defaults: Add missing configuration parameters using configured
defaults. The defaults are read from the Django settings file.
Defaults to True.
Raises:
PipelineConfigError: The run config YAML file fails schema validation.
"""
schema = cls.SCHEMA if validate else yaml.Any()
with open(yaml_path) as fh:
config_str = fh.read()
try:
config_yaml = yaml.load(config_str, schema=schema, label=label)
except yaml.YAMLValidationError as e:
raise PipelineConfigError(e)
if add_defaults:
# make a template config based on defaults
config_defaults_str = make_config_template(
cls.TEMPLATE_PATH,
**settings.PIPE_RUN_CONFIG_DEFAULTS,
)
config_defaults_dict: Dict[str, Any] = yaml.load(config_defaults_str).data
# merge configs
config_dict = dict_merge(config_defaults_dict, config_yaml.data)
config_yaml = yaml.as_document(config_dict, schema=schema, label=label)
return cls(config_yaml, validate_inputs=validate_inputs)
@staticmethod
def _resolve_glob_expressions(input_files: yaml.YAML) -> List[str]:
"""Resolve glob expressions in a YAML chunk, returning a list of sorted file
paths.
Args:
input_files (yaml.YAML): A validated YAML chunk of input files that is a
mapping of "glob" to either a single glob expression or a sequence of
glob expressions. e.g.
---
glob: /foo/*.fits
---
or
---
glob:
- /foo/A/*.fits
- /foo/B/*.fits
---
Returns:
The resolved file paths in lexicographical order.
"""
file_list: List[str] = []
if input_files["glob"].is_sequence():
for glob_expr in input_files["glob"]:
file_list.extend(sorted(list(glob(glob_expr.data))))
else:
file_list.extend(sorted(list(glob(input_files["glob"].data))))
return file_list
def _validate_inputs(self):
"""Validate the input files. Each input type (i.e. image, selavy, noise,
background) may be given as one of the following:
1. A list of files.
2. A glob expression.
3. A list of glob expressions.
4. A mapping of epochs to any of the above.
Each input type is validated individually. Extra input validation steps, e.g. to
ensure each input type has the same number of files, are performed in
`validate()`.
Raises:
PipelineConfigError: The run config inputs fail schema validation.
"""
try:
# first pass validation
self._yaml["inputs"].revalidate(yaml.Map(self._SCHEMA_INPUTS))
for input_type in self._yaml["inputs"]:
input_yaml = self._yaml["inputs"][input_type]
if input_yaml.is_mapping():
# inputs are either epoch-mode, glob expressions, or both
if "glob" in input_yaml:
# validate globs
input_yaml.revalidate(yaml.Map(self._SCHEMA_GLOB_INPUTS))
else:
# validate epoch mode which may also contain glob expressions
input_yaml.revalidate(
yaml.MapPattern(
yaml.Str(),
yaml.UniqueSeq(yaml.Str())
| yaml.Map(self._SCHEMA_GLOB_INPUTS),
)
)
except yaml.YAMLValidationError as e:
raise PipelineConfigError(e)
def validate(self, user: User = None):
"""Perform extra validation steps not covered by the default schema validation.
The following checks are performed in order. If a check fails, an exception is
raised and no further checks are performed.
1. All input files have the same number of epochs and the same number of files
per epoch.
2. The number of input files does not exceed the configured pipeline maximum.
This is only enforced if a regular user (not staff/admin) created the run.
3. There are at least two input images.
4. Background input images are required if source monitoring is turned on.
5. All input files exist.
Args:
user: Optional. The User of the request if made through the UI. Defaults to
None.
Raises:
PipelineConfigError: a validation check failed.
"""
# run standard base schema validation
try:
self._yaml.revalidate(self.SCHEMA)
except yaml.YAMLValidationError as e:
raise PipelineConfigError(e)
inputs = self["inputs"]
# epochs defined for images only, used as the reference list of epochs
epochs_image = inputs["image"].keys()
# map input type to a set of epochs
epochs_by_input_type = {
input_type: set(inputs[input_type].keys())
for input_type in inputs.keys()
}
# map input type to total number of files from all epochs
n_files_by_input_type: Dict[str, int] = {}
epoch_n_files: Dict[str, Dict[str, int]] = {}
n_files = 0
for input_type, epochs_set in epochs_by_input_type.items():
epoch_n_files[input_type] = {}
n_files_by_input_type[input_type] = 0
for epoch in epochs_set:
n = len(inputs[input_type][epoch])
n_files_by_input_type[input_type] += n
epoch_n_files[input_type][epoch] = n
n_files += n
# Note by this point the input files have been converted to a mapping regardless
# of the user's input format.
# Ensure all input file types have the same epochs.
try:
schema = yaml.Map({epoch: yaml.Seq(yaml.Str()) for epoch in epochs_image})
for input_type in inputs.keys():
# Generate a new YAML object on-the-fly per input to avoid saving
# a validation schema per file in the PipelineConfig object
# (These can consume a lot of RAM for long lists of input files).
yaml.load(self._yaml["inputs"][input_type].as_yaml(), schema=schema)
except yaml.YAMLValidationError:
# number of epochs could be different or the name of the epochs may not match
# find out which by counting the number of unique epochs per input type
n_epochs_per_input_type = [
len(epochs_set) for epochs_set in epochs_by_input_type.values()
]
if len(set(n_epochs_per_input_type)) > 1:
if self.epoch_based:
error_msg = "The number of epochs must match for all input types.\n"
else:
error_msg = "The number of files must match for all input types.\n"
else:
error_msg = "The name of the epochs must match for all input types.\n"
counts_str = ""
if self.epoch_based:
for input_type in epoch_n_files.keys():
n = len(epoch_n_files[input_type])
counts_str += (
f"{input_type} has {n} epoch{'s' if n > 1 else ''}:"
f" {', '.join(epoch_n_files[input_type].keys())}\n"
)
else:
for input_type, n in n_files_by_input_type.items():
counts_str += f"{input_type} has {n} file{'s' if n > 1 else ''}\n"
counts_str = counts_str[:-1]
raise PipelineConfigError(error_msg + counts_str)
# Ensure all input file type epochs have the same number of files per epoch.
# This could be combined with the number of epochs validation above, but we want
# to give specific feedback to the user on failure.
try:
schema = yaml.Map(
{epoch: yaml.FixedSeq([yaml.Str()] * epoch_n_files["image"][epoch])
for epoch in epochs_image})
for input_type in inputs.keys():
yaml.load(self._yaml["inputs"][input_type].as_yaml(), schema=schema)
except yaml.YAMLValidationError:
# map input type to a mapping of epoch to file count
file_counts_str = ""
for input_type in inputs.keys():
file_counts_str += f"{input_type}:\n"
for epoch in sorted(inputs[input_type].keys()):
file_counts_str += (
f" {epoch}: {len(inputs[input_type][epoch])}\n"
)
file_counts_str = file_counts_str[:-1]
raise PipelineConfigError(
"The number of files per epoch does not match between input types.\n"
+ file_counts_str
)
# ensure the number of input files is less than the user limit
if user and n_files > settings.MAX_PIPERUN_IMAGES:
if user.is_staff:
logger.warning(
"Maximum number of images"
f" ({settings.MAX_PIPERUN_IMAGES}) rule bypassed with"
" admin status."
)
else:
raise PipelineConfigError(
f"The number of images entered ({n_files})"
" exceeds the maximum number of images currently"
f" allowed ({settings.MAX_PIPERUN_IMAGES}). Please ask"
" an administrator for advice on processing your run."
)
# ensure at least two inputs are provided
check = [n_files_by_input_type[input_type] < 2 for input_type in inputs.keys()]
if any(check):
raise PipelineConfigError(
"Number of image files must to be larger than 1"
)
# ensure background files are provided if source monitoring is requested
try:
monitor = self["source_monitoring"]["monitor"]
except KeyError:
monitor = False
if monitor:
inputs_schema = yaml.Map(
{
k: yaml.UniqueSeq(yaml.Str())
| yaml.MapPattern(yaml.Str(), yaml.UniqueSeq(yaml.Str()))
for k in self._REQUIRED_INPUT_TYPES
}
)
try:
self._yaml["inputs"].revalidate(inputs_schema)
except yaml.YAMLValidationError:
raise PipelineConfigError(
"Background files must be provided if source monitoring is enabled."
)
# ensure the input files all exist
for input_type in inputs.keys():
for epoch, file_list in inputs[input_type].items():
for file in file_list:
if not os.path.exists(file):
raise PipelineConfigError(f"{file} does not exist.")
# ensure num_workers and num_workers_io are
# either None (from null in config yaml) or an integer
for param_name in ('num_workers', 'num_workers_io'):
param_value = self['processing'][param_name]
if (param_value is not None) and (type(param_value) is not int):
raise PipelineConfigError(f"{param_name} can only be an integer or 'null'")
def check_prev_config_diff(self) -> bool:
"""
Checks if the previous config file differs from the current config file. Used in
add mode. Only returns true if the images are different and the other general
settings are the same (the requirement for add mode). Otherwise False is returned.
Returns:
`True` if images are different but general settings are the same,
otherwise `False` is returned.
"""
prev_config = PipelineConfig.from_file(
os.path.join(self["run"]["path"], "config_prev.yaml"),
label="previous run config",
)
if self._yaml == prev_config._yaml:
return True
# are the input image files different?
images_changed = self["inputs"]["image"] != prev_config["inputs"]["image"]
# are all the non-input file configs the same?
config_dict = self._yaml.data
prev_config_dict = prev_config._yaml.data
_ = config_dict.pop("inputs")
_ = prev_config_dict.pop("inputs")
settings_check = config_dict == prev_config_dict
if images_changed and settings_check:
return False
return True
def image_opts(self) -> Dict[str, Any]:
"""
Get the config options required for image ingestion only.
Namely:
- selavy_local_rms_fill_value
- condon_errors
- ra_uncertainty
- dec_uncertainty
Returns:
The relevant key value pairs
"""
keys = [
"selavy_local_rms_fill_value",
"condon_errors",
"ra_uncertainty",
"dec_uncertainty"
]
return {key: self["measurements"][key] for key in keys}
|