Skip to content

main.py

This module contains the relevant classes for the image ingestion.

FitsImage

Bases: Image

FitsImage class to model FITS files

Attributes:

Name Type Description
beam_bmaj float

Major axis size of the restoring beam (degrees).

beam_bmin float

Minor axis size of the restoring beam (degrees).

beam_bpa float

Position angle of the restoring beam (degrees).

datetime Timestamp

Date of the observation.

duration float

Duration of the observation in seconds. Is set to 0 if duration is not in header.

fov_bmaj float

Estimate of the field of view in the north-south direction (degrees).

fov_bmin float

Estimate of the field of view in the east-west direction (degrees).

ra float

Right ascension coordinate of the image centre (degrees).

dec float

Declination coordinate of the image centre (degrees).

polarisation str

The polarisation of the image.

Source code in vast_pipeline/image/main.py
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
class FitsImage(Image):
    """
    FitsImage class to model FITS files

    Attributes:
        beam_bmaj (float): Major axis size of the restoring beam (degrees).
        beam_bmin (float): Minor axis size of the restoring beam (degrees).
        beam_bpa (float): Position angle of the restoring beam (degrees).
        datetime (pd.Timestamp): Date of the observation.
        duration (float): Duration of the observation in seconds. Is set to
            0 if duration is not in header.
        fov_bmaj (float): Estimate of the field of view in the north-south
            direction (degrees).
        fov_bmin (float): Estimate of the field of view in the east-west
            direction (degrees).
        ra (float): Right ascension coordinate of the image centre (degrees).
        dec (float): Declination coordinate of the image centre (degrees).
        polarisation (str): The polarisation of the image.
    """

    entire_image = True

    def __init__(self, path: str, hdu_index: int = 0) -> None:
        """
        Initialise a FitsImage object.

        Args:
            path:
                The system path of the FITS image.
            hdu_index:
                The index to use on the hdu to fetch the FITS header.

        Returns:
            None.
        """
        # inherit from parent
        super().__init__(path)

        # set other attributes
        header = self.__get_header(hdu_index)

        # set the rest of the attributes
        self.__set_img_attr_for_telescope(header)

        # get the frequency
        self.__get_frequency(header)

    def __get_header(self, hdu_index: int) -> fits.Header:
        """
        Retrieves the header from the FITS image.

        Args:
            hdu_index:
                The index to use on the hdu to fetch the FITS header.

        Returns:
            The FITS header as an astropy.io.fits.Header object.
        """

        try:
            with open_fits(self.path) as hdulist:
                hdu = hdulist[hdu_index]
        except Exception:
            raise IOError((
                'Could not read FITS file: '
                f'{self.path}'
            ))

        return hdu.header.copy()

    def __set_img_attr_for_telescope(self, header):
        '''
        Set the image attributes depending on the telescope type
        '''
        self.polarisation = header.get('STOKES', 'I')
        self.duration = float(header.get('DURATION', 0.))
        self.beam_bmaj = 0.
        self.beam_bmin = 0.
        self.beam_bpa = 0.
        self.ra = None
        self.dec = None
        self.fov_bmaj = None
        self.fov_bmin = None

        if header.get('TELESCOP', None) == 'ASKAP':
            try:
                self.datetime = pd.Timestamp(
                    header['DATE-OBS'], tz=header['TIMESYS']
                )
                self.beam_bmaj = header['BMAJ']
                self.beam_bmin = header['BMIN']
                self.beam_bpa = header['BPA']
            except KeyError as e:
                logger.exception(
                    "Image %s does not contain expected FITS header keywords.",
                    self.name,
                )
                raise e

            params = {
                'header': header,
                'fits_naxis1': 'NAXIS1',
                'fits_naxis2': 'NAXIS2',
            }

            # set the coordinate attributes
            self.__get_img_coordinates(**params)

        # get the time as Julian Datetime using Pandas function
        self.jd = self.datetime.to_julian_date()

    def __get_img_coordinates(
        self, header: fits.Header, fits_naxis1: str, fits_naxis2: str
    ) -> None:
        """
        Set the image attributes ra, dec, fov_bmin and fov_bmaj, radius
        from the image file header.

        Args:
            header: The FITS header object.
            fits_naxis1: The header keyword of the NAXIS1 to use.
            fits_naxis2: The header keyword of the NAXIS2 to use.

        Returns:
            None
        """
        wcs = WCS(header, naxis=2)
        pix_centre = [[header[fits_naxis1] / 2., header[fits_naxis2] / 2.]]
        self.ra, self.dec = wcs.wcs_pix2world(pix_centre, 1)[0]

        # The field-of-view (in pixels) is assumed to be a circle in the centre
        # of the image. This may be an ellipse on the sky, eg MOST images.
        # We leave a pixel margin at the edge that we don't use.
        # TODO: move unused pixel as argument
        unusedpix = 0.
        usable_radius_pix = self.__get_radius_pixels(
            header, fits_naxis1, fits_naxis2
        ) - unusedpix
        cdelt1, cdelt2 = proj_plane_pixel_scales(WCS(header).celestial)
        self.fov_bmin = usable_radius_pix * abs(cdelt1)
        self.fov_bmaj = usable_radius_pix * abs(cdelt2)
        self.physical_bmin = header[fits_naxis1] * abs(cdelt1)
        self.physical_bmaj = header[fits_naxis2] * abs(cdelt2)

        # set the pixels radius
        # TODO: check calcs
        self.radius_pixels = usable_radius_pix

    def __get_radius_pixels(
        self, header: fits.Header, fits_naxis1: str, fits_naxis2: str
    ) -> float:
        """
        Return the radius (pixels) of the full image.

        If the image is not a square/circle then the shortest radius will be
        returned.

        Args:
            header: The FITS header object.
            fits_naxis1: The header keyword of the NAXIS1 to use.
            fits_naxis2: The header keyword of the NAXIS2 to use.

        Returns:
            The radius of the image in pixels.
        """
        if self.entire_image:
            # a large circle that *should* include the whole image
            # (and then some)
            diameter = np.hypot(header[fits_naxis1], header[fits_naxis2])
        else:
            # We simply place the largest circle we can in the centre.
            diameter = min(header[fits_naxis1], header[fits_naxis2])
        return diameter / 2.

    def __get_frequency(self, header: fits.Header) -> None:
        """
        Set some 'shortcut' variables for access to the frequency parameters
        in the FITS file header.

        Args:
            header: The FITS header object.

        Returns:
            None
        """
        self.freq_eff = None
        self.freq_bw = None
        try:
            freq_keys = ('FREQ', 'VOPT')
            if ('ctype3' in header) and (header['ctype3'] in freq_keys):
                self.freq_eff = header['crval3']
                self.freq_bw = header['cdelt3'] if 'cdelt3' in header else 0.0
            elif ('ctype4' in header) and (header['ctype4'] in freq_keys):
                self.freq_eff = header['crval4']
                self.freq_bw = header['cdelt4'] if 'cdelt4' in header else 0.0
            else:
                self.freq_eff = header['restfreq']
                self.freq_bw = header['restbw'] if 'restbw' in header else 0.0
        except Exception:
            msg = f"Frequency not specified in headers for {self.name}"
            logger.error(msg)
            raise TypeError(msg)

__get_frequency(header)

Set some 'shortcut' variables for access to the frequency parameters in the FITS file header.

Parameters:

Name Type Description Default
header Header

The FITS header object.

required

Returns:

Type Description
None

None

Source code in vast_pipeline/image/main.py
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def __get_frequency(self, header: fits.Header) -> None:
    """
    Set some 'shortcut' variables for access to the frequency parameters
    in the FITS file header.

    Args:
        header: The FITS header object.

    Returns:
        None
    """
    self.freq_eff = None
    self.freq_bw = None
    try:
        freq_keys = ('FREQ', 'VOPT')
        if ('ctype3' in header) and (header['ctype3'] in freq_keys):
            self.freq_eff = header['crval3']
            self.freq_bw = header['cdelt3'] if 'cdelt3' in header else 0.0
        elif ('ctype4' in header) and (header['ctype4'] in freq_keys):
            self.freq_eff = header['crval4']
            self.freq_bw = header['cdelt4'] if 'cdelt4' in header else 0.0
        else:
            self.freq_eff = header['restfreq']
            self.freq_bw = header['restbw'] if 'restbw' in header else 0.0
    except Exception:
        msg = f"Frequency not specified in headers for {self.name}"
        logger.error(msg)
        raise TypeError(msg)

__get_header(hdu_index)

Retrieves the header from the FITS image.

Parameters:

Name Type Description Default
hdu_index int

The index to use on the hdu to fetch the FITS header.

required

Returns:

Type Description
Header

The FITS header as an astropy.io.fits.Header object.

Source code in vast_pipeline/image/main.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def __get_header(self, hdu_index: int) -> fits.Header:
    """
    Retrieves the header from the FITS image.

    Args:
        hdu_index:
            The index to use on the hdu to fetch the FITS header.

    Returns:
        The FITS header as an astropy.io.fits.Header object.
    """

    try:
        with open_fits(self.path) as hdulist:
            hdu = hdulist[hdu_index]
    except Exception:
        raise IOError((
            'Could not read FITS file: '
            f'{self.path}'
        ))

    return hdu.header.copy()

__get_img_coordinates(header, fits_naxis1, fits_naxis2)

Set the image attributes ra, dec, fov_bmin and fov_bmaj, radius from the image file header.

Parameters:

Name Type Description Default
header Header

The FITS header object.

required
fits_naxis1 str

The header keyword of the NAXIS1 to use.

required
fits_naxis2 str

The header keyword of the NAXIS2 to use.

required

Returns:

Type Description
None

None

Source code in vast_pipeline/image/main.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def __get_img_coordinates(
    self, header: fits.Header, fits_naxis1: str, fits_naxis2: str
) -> None:
    """
    Set the image attributes ra, dec, fov_bmin and fov_bmaj, radius
    from the image file header.

    Args:
        header: The FITS header object.
        fits_naxis1: The header keyword of the NAXIS1 to use.
        fits_naxis2: The header keyword of the NAXIS2 to use.

    Returns:
        None
    """
    wcs = WCS(header, naxis=2)
    pix_centre = [[header[fits_naxis1] / 2., header[fits_naxis2] / 2.]]
    self.ra, self.dec = wcs.wcs_pix2world(pix_centre, 1)[0]

    # The field-of-view (in pixels) is assumed to be a circle in the centre
    # of the image. This may be an ellipse on the sky, eg MOST images.
    # We leave a pixel margin at the edge that we don't use.
    # TODO: move unused pixel as argument
    unusedpix = 0.
    usable_radius_pix = self.__get_radius_pixels(
        header, fits_naxis1, fits_naxis2
    ) - unusedpix
    cdelt1, cdelt2 = proj_plane_pixel_scales(WCS(header).celestial)
    self.fov_bmin = usable_radius_pix * abs(cdelt1)
    self.fov_bmaj = usable_radius_pix * abs(cdelt2)
    self.physical_bmin = header[fits_naxis1] * abs(cdelt1)
    self.physical_bmaj = header[fits_naxis2] * abs(cdelt2)

    # set the pixels radius
    # TODO: check calcs
    self.radius_pixels = usable_radius_pix

__get_radius_pixels(header, fits_naxis1, fits_naxis2)

Return the radius (pixels) of the full image.

If the image is not a square/circle then the shortest radius will be returned.

Parameters:

Name Type Description Default
header Header

The FITS header object.

required
fits_naxis1 str

The header keyword of the NAXIS1 to use.

required
fits_naxis2 str

The header keyword of the NAXIS2 to use.

required

Returns:

Type Description
float

The radius of the image in pixels.

Source code in vast_pipeline/image/main.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def __get_radius_pixels(
    self, header: fits.Header, fits_naxis1: str, fits_naxis2: str
) -> float:
    """
    Return the radius (pixels) of the full image.

    If the image is not a square/circle then the shortest radius will be
    returned.

    Args:
        header: The FITS header object.
        fits_naxis1: The header keyword of the NAXIS1 to use.
        fits_naxis2: The header keyword of the NAXIS2 to use.

    Returns:
        The radius of the image in pixels.
    """
    if self.entire_image:
        # a large circle that *should* include the whole image
        # (and then some)
        diameter = np.hypot(header[fits_naxis1], header[fits_naxis2])
    else:
        # We simply place the largest circle we can in the centre.
        diameter = min(header[fits_naxis1], header[fits_naxis2])
    return diameter / 2.

__init__(path, hdu_index=0)

Initialise a FitsImage object.

Parameters:

Name Type Description Default
path str

The system path of the FITS image.

required
hdu_index int

The index to use on the hdu to fetch the FITS header.

0

Returns:

Type Description
None

None.

Source code in vast_pipeline/image/main.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def __init__(self, path: str, hdu_index: int = 0) -> None:
    """
    Initialise a FitsImage object.

    Args:
        path:
            The system path of the FITS image.
        hdu_index:
            The index to use on the hdu to fetch the FITS header.

    Returns:
        None.
    """
    # inherit from parent
    super().__init__(path)

    # set other attributes
    header = self.__get_header(hdu_index)

    # set the rest of the attributes
    self.__set_img_attr_for_telescope(header)

    # get the frequency
    self.__get_frequency(header)

__set_img_attr_for_telescope(header)

Set the image attributes depending on the telescope type

Source code in vast_pipeline/image/main.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def __set_img_attr_for_telescope(self, header):
    '''
    Set the image attributes depending on the telescope type
    '''
    self.polarisation = header.get('STOKES', 'I')
    self.duration = float(header.get('DURATION', 0.))
    self.beam_bmaj = 0.
    self.beam_bmin = 0.
    self.beam_bpa = 0.
    self.ra = None
    self.dec = None
    self.fov_bmaj = None
    self.fov_bmin = None

    if header.get('TELESCOP', None) == 'ASKAP':
        try:
            self.datetime = pd.Timestamp(
                header['DATE-OBS'], tz=header['TIMESYS']
            )
            self.beam_bmaj = header['BMAJ']
            self.beam_bmin = header['BMIN']
            self.beam_bpa = header['BPA']
        except KeyError as e:
            logger.exception(
                "Image %s does not contain expected FITS header keywords.",
                self.name,
            )
            raise e

        params = {
            'header': header,
            'fits_naxis1': 'NAXIS1',
            'fits_naxis2': 'NAXIS2',
        }

        # set the coordinate attributes
        self.__get_img_coordinates(**params)

    # get the time as Julian Datetime using Pandas function
    self.jd = self.datetime.to_julian_date()

Image

Bases: object

Generic abstract class for an image.

Attributes:

Name Type Description
name str

The image name taken from the file name.

path str

The system path to the image.

Source code in vast_pipeline/image/main.py
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class Image(object):
    """Generic abstract class for an image.

    Attributes:
        name (str): The image name taken from the file name.
        path (str): The system path to the image.

    """

    def __init__(self, path: str) -> None:
        """
        Initiliase an image object.

        Args:
            path:
                The system path to the FITS image. The name of the image is
                taken from the filename in the given path.

        Returns:
            None.
        """
        self.name = os.path.basename(path)
        self.path = path

    def __repr__(self) -> str:
        """
        Defines the printable representation.

        Returns:
            Printable representation which is the pipeline run name.
        """
        return self.name

__init__(path)

Initiliase an image object.

Parameters:

Name Type Description Default
path str

The system path to the FITS image. The name of the image is taken from the filename in the given path.

required

Returns:

Type Description
None

None.

Source code in vast_pipeline/image/main.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def __init__(self, path: str) -> None:
    """
    Initiliase an image object.

    Args:
        path:
            The system path to the FITS image. The name of the image is
            taken from the filename in the given path.

    Returns:
        None.
    """
    self.name = os.path.basename(path)
    self.path = path

__repr__()

Defines the printable representation.

Returns:

Type Description
str

Printable representation which is the pipeline run name.

Source code in vast_pipeline/image/main.py
53
54
55
56
57
58
59
60
def __repr__(self) -> str:
    """
    Defines the printable representation.

    Returns:
        Printable representation which is the pipeline run name.
    """
    return self.name

SelavyImage

Bases: FitsImage

Fits images that have a selavy catalogue.

Attributes:

Name Type Description
selavy_path str

The system path to the Selavy file.

noise_path str

The system path to the noise image associated with the image.

background_path str

The system path to the background image associated with the image.

config Dict

The image configuration settings.

Source code in vast_pipeline/image/main.py
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
class SelavyImage(FitsImage):
    """
    Fits images that have a selavy catalogue.

    Attributes:
        selavy_path (str): The system path to the Selavy file.
        noise_path (str): The system path to the noise image associated
            with the image.
        background_path (str): The system path to the background image
            associated with the image.
        config (Dict): The image configuration settings.
    """

    def __init__(
        self,
        path: str,
        paths: Dict[str, Dict[str, str]],
        config: Dict,
        hdu_index: int = 0,
    ) -> None:
        """
        Initialise the SelavyImage.

        Args:
            path: The system path to the FITS image.
            paths: Dictionary containing the system paths to the associated
                image products and selavy catalogue. The keys are 'selavy',
                'noise', 'background'.
            config: Configuration settings for the image ingestion.
            hdu_index: The index number to use to access the header from the
                hdu object.

        Returns:
            None.
        """
        # inherit from parent
        self.selavy_path = paths['selavy'][path]
        self.noise_path = paths['noise'].get(path, '')
        self.background_path = paths['background'].get(path, '')
        self.config: Dict = config
        super().__init__(path, hdu_index)

    def read_selavy(self, dj_image: models.Image) -> pd.DataFrame:
        """
        Read the sources from the selavy catalogue, select wanted columns
        and remap them to correct names, followed by filtering and Condon
        error calculations.

        Args:
            dj_image: The image model object.

        Returns:
            Dataframe containing the cleaned and processed Selavy components.
        """
        # TODO: improve with loading only the cols we need and set datatype
        if self.selavy_path.endswith(
                ".xml") or self.selavy_path.endswith(".vot"):
            df = Table.read(
                self.selavy_path, format="votable", use_names_over_ids=True
            ).to_pandas()
        elif self.selavy_path.endswith(".csv"):
            # CSVs from CASDA have all lowercase column names
            df = pd.read_csv(self.selavy_path).rename(
                columns={"spectral_index_from_tt": "spectral_index_from_TT"}
            )
        else:
            df = pd.read_fwf(self.selavy_path, skiprows=[1])
        # drop first line with unit of measure, select only wanted
        # columns and rename them
        df = df.loc[:, tr_selavy.keys()].rename(
            columns={x: tr_selavy[x]["name"] for x in tr_selavy}
        )

        # fix dtype of columns
        for ky in tr_selavy:
            key = tr_selavy[ky]
            if df[key['name']].dtype != key['dtype']:
                df[key['name']] = df[key['name']].astype(key['dtype'])

        # do checks and fill in missing field for uploading sources
        # in DB (see fields in models.py -> Source model)
        if df['component_id'].duplicated().any():
            raise Exception('Found duplicated names in sources')

        # drop unrealistic sources
        cols_to_check = [
            'bmaj',
            'bmin',
            'flux_peak',
            'flux_int',
        ]

        bad_sources = df[(df[cols_to_check] == 0).any(axis=1)]
        if bad_sources.shape[0] > 0:
            logger.debug("Dropping %i bad sources.", bad_sources.shape[0])
            df = df.drop(bad_sources.index)

        # dropping tiny sources
        nr_sources_old = df.shape[0]
        df = df.loc[
            (df['bmaj'] > dj_image.beam_bmaj * 500) &
            (df['bmin'] > dj_image.beam_bmin * 500)
        ]
        if df.shape[0] != nr_sources_old:
            logger.info(
                'Dropped %i tiny sources.', nr_sources_old - df.shape[0]
            )

        # add fields from image and fix name column
        df['image_id'] = dj_image.id
        df['time'] = dj_image.datetime

        # append img prefix to source name
        img_prefix = dj_image.name.split('.i.', 1)[-1].split('.', 1)[0] + '_'
        df['name'] = img_prefix + df['component_id']

        # # fix error fluxes
        for col in ['flux_int_err', 'flux_peak_err']:
            sel = df[col] < settings.FLUX_DEFAULT_MIN_ERROR
            if sel.any():
                df.loc[sel, col] = settings.FLUX_DEFAULT_MIN_ERROR

        # # fix error ra dec
        for col in ['ra_err', 'dec_err']:
            sel = df[col] < settings.POS_DEFAULT_MIN_ERROR
            if sel.any():
                df.loc[sel, col] = settings.POS_DEFAULT_MIN_ERROR
            df[col] = df[col] / 3600.

        # replace 0 local_rms values using user config value
        df.loc[
            df['local_rms'] == 0., 'local_rms'
        ] = self.config["selavy_local_rms_fill_value"]

        df['snr'] = df['flux_peak'].values / df['local_rms'].values
        df['compactness'] = df['flux_int'].values / df['flux_peak'].values

        if self.config["condon_errors"]:
            logger.debug("Calculating Condon '97 errors...")
            theta_B = dj_image.beam_bmaj
            theta_b = dj_image.beam_bmin

            df[[
                'flux_peak_err',
                'flux_int_err',
                'err_bmaj',
                'err_bmin',
                'err_pa',
                'ra_err',
                'dec_err',
            ]] = df[[
                'flux_peak',
                'flux_int',
                'bmaj',
                'bmin',
                'pa',
                'snr',
                'local_rms',
            ]].apply(
                calc_condon_flux_errors,
                args=(theta_B, theta_b),
                axis=1,
                result_type='expand'
            )

            logger.debug("Condon errors done.")

        logger.debug("Calculating positional errors...")
        # TODO: avoid extra column given that it is a single value
        df['ew_sys_err'] = self.config["ra_uncertainty"] / 3600.
        df['ns_sys_err'] = self.config["dec_uncertainty"] / 3600.

        df['error_radius'] = calc_error_radius(
            df['ra'].values,
            df['ra_err'].values,
            df['dec'].values,
            df['dec_err'].values,
        )

        df['uncertainty_ew'] = np.hypot(
            df['ew_sys_err'].values, df['error_radius'].values
        )

        df['uncertainty_ns'] = np.hypot(
            df['ns_sys_err'].values, df['error_radius'].values
        )

        # weight calculations to use later
        df['weight_ew'] = 1. / df['uncertainty_ew'].values**2
        df['weight_ns'] = 1. / df['uncertainty_ns'].values**2

        logger.debug('Positional errors done.')

        # Initialise the forced column as False
        df['forced'] = False

        # Calculate island flux fractions
        island_flux_totals = (
            df[['island_id', 'flux_int', 'flux_peak']]
            .groupby('island_id')
            .agg('sum')
        )

        df['flux_int_isl_ratio'] = (
            df['flux_int'].values
            / island_flux_totals.loc[df['island_id']]['flux_int'].values
        )

        df['flux_peak_isl_ratio'] = (
            df['flux_peak'].values
            / island_flux_totals.loc[df['island_id']]['flux_peak'].values
        )

        return df

__init__(path, paths, config, hdu_index=0)

Initialise the SelavyImage.

Parameters:

Name Type Description Default
path str

The system path to the FITS image.

required
paths Dict[str, Dict[str, str]]

Dictionary containing the system paths to the associated image products and selavy catalogue. The keys are 'selavy', 'noise', 'background'.

required
config Dict

Configuration settings for the image ingestion.

required
hdu_index int

The index number to use to access the header from the hdu object.

0

Returns:

Type Description
None

None.

Source code in vast_pipeline/image/main.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
def __init__(
    self,
    path: str,
    paths: Dict[str, Dict[str, str]],
    config: Dict,
    hdu_index: int = 0,
) -> None:
    """
    Initialise the SelavyImage.

    Args:
        path: The system path to the FITS image.
        paths: Dictionary containing the system paths to the associated
            image products and selavy catalogue. The keys are 'selavy',
            'noise', 'background'.
        config: Configuration settings for the image ingestion.
        hdu_index: The index number to use to access the header from the
            hdu object.

    Returns:
        None.
    """
    # inherit from parent
    self.selavy_path = paths['selavy'][path]
    self.noise_path = paths['noise'].get(path, '')
    self.background_path = paths['background'].get(path, '')
    self.config: Dict = config
    super().__init__(path, hdu_index)

read_selavy(dj_image)

Read the sources from the selavy catalogue, select wanted columns and remap them to correct names, followed by filtering and Condon error calculations.

Parameters:

Name Type Description Default
dj_image Image

The image model object.

required

Returns:

Type Description
DataFrame

Dataframe containing the cleaned and processed Selavy components.

Source code in vast_pipeline/image/main.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
def read_selavy(self, dj_image: models.Image) -> pd.DataFrame:
    """
    Read the sources from the selavy catalogue, select wanted columns
    and remap them to correct names, followed by filtering and Condon
    error calculations.

    Args:
        dj_image: The image model object.

    Returns:
        Dataframe containing the cleaned and processed Selavy components.
    """
    # TODO: improve with loading only the cols we need and set datatype
    if self.selavy_path.endswith(
            ".xml") or self.selavy_path.endswith(".vot"):
        df = Table.read(
            self.selavy_path, format="votable", use_names_over_ids=True
        ).to_pandas()
    elif self.selavy_path.endswith(".csv"):
        # CSVs from CASDA have all lowercase column names
        df = pd.read_csv(self.selavy_path).rename(
            columns={"spectral_index_from_tt": "spectral_index_from_TT"}
        )
    else:
        df = pd.read_fwf(self.selavy_path, skiprows=[1])
    # drop first line with unit of measure, select only wanted
    # columns and rename them
    df = df.loc[:, tr_selavy.keys()].rename(
        columns={x: tr_selavy[x]["name"] for x in tr_selavy}
    )

    # fix dtype of columns
    for ky in tr_selavy:
        key = tr_selavy[ky]
        if df[key['name']].dtype != key['dtype']:
            df[key['name']] = df[key['name']].astype(key['dtype'])

    # do checks and fill in missing field for uploading sources
    # in DB (see fields in models.py -> Source model)
    if df['component_id'].duplicated().any():
        raise Exception('Found duplicated names in sources')

    # drop unrealistic sources
    cols_to_check = [
        'bmaj',
        'bmin',
        'flux_peak',
        'flux_int',
    ]

    bad_sources = df[(df[cols_to_check] == 0).any(axis=1)]
    if bad_sources.shape[0] > 0:
        logger.debug("Dropping %i bad sources.", bad_sources.shape[0])
        df = df.drop(bad_sources.index)

    # dropping tiny sources
    nr_sources_old = df.shape[0]
    df = df.loc[
        (df['bmaj'] > dj_image.beam_bmaj * 500) &
        (df['bmin'] > dj_image.beam_bmin * 500)
    ]
    if df.shape[0] != nr_sources_old:
        logger.info(
            'Dropped %i tiny sources.', nr_sources_old - df.shape[0]
        )

    # add fields from image and fix name column
    df['image_id'] = dj_image.id
    df['time'] = dj_image.datetime

    # append img prefix to source name
    img_prefix = dj_image.name.split('.i.', 1)[-1].split('.', 1)[0] + '_'
    df['name'] = img_prefix + df['component_id']

    # # fix error fluxes
    for col in ['flux_int_err', 'flux_peak_err']:
        sel = df[col] < settings.FLUX_DEFAULT_MIN_ERROR
        if sel.any():
            df.loc[sel, col] = settings.FLUX_DEFAULT_MIN_ERROR

    # # fix error ra dec
    for col in ['ra_err', 'dec_err']:
        sel = df[col] < settings.POS_DEFAULT_MIN_ERROR
        if sel.any():
            df.loc[sel, col] = settings.POS_DEFAULT_MIN_ERROR
        df[col] = df[col] / 3600.

    # replace 0 local_rms values using user config value
    df.loc[
        df['local_rms'] == 0., 'local_rms'
    ] = self.config["selavy_local_rms_fill_value"]

    df['snr'] = df['flux_peak'].values / df['local_rms'].values
    df['compactness'] = df['flux_int'].values / df['flux_peak'].values

    if self.config["condon_errors"]:
        logger.debug("Calculating Condon '97 errors...")
        theta_B = dj_image.beam_bmaj
        theta_b = dj_image.beam_bmin

        df[[
            'flux_peak_err',
            'flux_int_err',
            'err_bmaj',
            'err_bmin',
            'err_pa',
            'ra_err',
            'dec_err',
        ]] = df[[
            'flux_peak',
            'flux_int',
            'bmaj',
            'bmin',
            'pa',
            'snr',
            'local_rms',
        ]].apply(
            calc_condon_flux_errors,
            args=(theta_B, theta_b),
            axis=1,
            result_type='expand'
        )

        logger.debug("Condon errors done.")

    logger.debug("Calculating positional errors...")
    # TODO: avoid extra column given that it is a single value
    df['ew_sys_err'] = self.config["ra_uncertainty"] / 3600.
    df['ns_sys_err'] = self.config["dec_uncertainty"] / 3600.

    df['error_radius'] = calc_error_radius(
        df['ra'].values,
        df['ra_err'].values,
        df['dec'].values,
        df['dec_err'].values,
    )

    df['uncertainty_ew'] = np.hypot(
        df['ew_sys_err'].values, df['error_radius'].values
    )

    df['uncertainty_ns'] = np.hypot(
        df['ns_sys_err'].values, df['error_radius'].values
    )

    # weight calculations to use later
    df['weight_ew'] = 1. / df['uncertainty_ew'].values**2
    df['weight_ns'] = 1. / df['uncertainty_ns'].values**2

    logger.debug('Positional errors done.')

    # Initialise the forced column as False
    df['forced'] = False

    # Calculate island flux fractions
    island_flux_totals = (
        df[['island_id', 'flux_int', 'flux_peak']]
        .groupby('island_id')
        .agg('sum')
    )

    df['flux_int_isl_ratio'] = (
        df['flux_int'].values
        / island_flux_totals.loc[df['island_id']]['flux_int'].values
    )

    df['flux_peak_isl_ratio'] = (
        df['flux_peak'].values
        / island_flux_totals.loc[df['island_id']]['flux_peak'].values
    )

    return df